These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 7473184)

  • 1. Peritubular paraquat transport in isolated renal proximal tubules.
    Groves CE; Morales MN; Gandolfi AJ; Dantzler WH; Wright SH
    J Pharmacol Exp Ther; 1995 Nov; 275(2):926-32. PubMed ID: 7473184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paraquat2+/H+ exchange in isolated renal brush-border membrane vesicles.
    Wright SH; Wunz TM
    Biochim Biophys Acta; 1995 Nov; 1240(1):18-24. PubMed ID: 7495843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peritubular organic cation transport in isolated rabbit proximal tubules.
    Groves CE; Evans KK; Dantzler WH; Wright SH
    Am J Physiol; 1994 Mar; 266(3 Pt 2):F450-8. PubMed ID: 8160794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic cation uptake by a cultured renal epithelium.
    McKinney TD; DeLeon C; Speeg KV
    J Cell Physiol; 1988 Dec; 137(3):513-20. PubMed ID: 3192630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neurotoxin 1-methyl-4-phenylpyridinium is a substrate for the canalicular organic cation/H+ exchanger.
    Moseley RH; Zugger LJ; Van Dyke RW
    J Pharmacol Exp Ther; 1997 Apr; 281(1):34-40. PubMed ID: 9103477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic cation transporters OCT1, 2, and 3 mediate high-affinity transport of the mutagenic vital dye ethidium in the kidney proximal tubule.
    Lee WK; Reichold M; Edemir B; Ciarimboli G; Warth R; Koepsell H; Thévenod F
    Am J Physiol Renal Physiol; 2009 Jun; 296(6):F1504-13. PubMed ID: 19357179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetrapentylammonium (TPeA): slowly dissociating inhibitor of the renal peritubular organic cation transporter.
    Groves CE; Wright SH
    Biochim Biophys Acta; 1995 Mar; 1234(1):37-42. PubMed ID: 7880858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MPP+ is transported by the TEA(+)-H+ exchanger of renal brush-border membrane vesicles.
    Lazaruk KD; Wright SH
    Am J Physiol; 1990 Mar; 258(3 Pt 2):F597-605. PubMed ID: 2316668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affinity of different local anesthetic drugs and catecholamines for the contraluminal transport system for organic cations in proximal tubules of rat kidneys.
    Brändle E; Fritzsch G; Greven J
    J Pharmacol Exp Ther; 1992 Feb; 260(2):734-41. PubMed ID: 1738120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peritubular transport of ochratoxin A in rabbit renal proximal tubules.
    Groves CE; Morales M; Wright SH
    J Pharmacol Exp Ther; 1998 Mar; 284(3):943-8. PubMed ID: 9495853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic cation transport and cationic drug interactions in freshly isolated proximal tubular cells of the rat.
    Boom SP; Gribnau FW; Russel FG
    J Pharmacol Exp Ther; 1992 Nov; 263(2):445-50. PubMed ID: 1359105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of endogenous and exogenous polyamines on organic cation transport in rabbit renal plasma membrane vesicles.
    Sokol PP; Gates SB
    J Pharmacol Exp Ther; 1990 Oct; 255(1):52-8. PubMed ID: 2145425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basolateral tetraethylammonium transport in intact tubules: specificity and trans-stimulation.
    Dantzler WH; Wright SH; Chatsudthipong V; Brokl OH
    Am J Physiol; 1991 Sep; 261(3 Pt 2):F386-92. PubMed ID: 1887903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple pathways for uptake of paraquat, methylglyoxal bis(guanylhydrazone), and polyamines.
    Byers TL; Kameji R; Rannels DE; Pegg AE
    Am J Physiol; 1987 Jun; 252(6 Pt 1):C663-9. PubMed ID: 3109250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation by protein kinase C of the contraluminal transport system for organic cations in rabbit kidney S2 proximal tubules.
    Hohage H; Mörth DM; Querl IU; Greven J
    J Pharmacol Exp Ther; 1994 Feb; 268(2):897-901. PubMed ID: 8114003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional mapping of rbOCT1 and rbOCT2 activity in the S2 segment of rabbit proximal tubule.
    Kaewmokul S; Chatsudthipong V; Evans KK; Dantzler WH; Wright SH
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1149-59. PubMed ID: 12944320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of substrate structure on substrate binding to the renal organic cation/H+ exchanger.
    Wright SH; Wunz TM
    Pflugers Arch; 1999 Mar; 437(4):603-10. PubMed ID: 10089574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The multidrug transporter MATE1 sequesters OCs within an intracellular compartment that has no influence on OC secretion in renal proximal tubules.
    Martínez-Guerrero LJ; Evans KK; Dantzler WH; Wright SH
    Am J Physiol Renal Physiol; 2016 Jan; 310(1):F57-67. PubMed ID: 26538438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The basolateral organic cation transport system of rabbit kidney proximal tubules. Influence of anorganic anions.
    Hohage H; Querl IU; Mörth DM; Greven J
    J Pharmacol Exp Ther; 1996 Dec; 279(3):1086-91. PubMed ID: 8968328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetraethylammonium and amantadine identify distinct organic cation transporters in rat renal cortical proximal and distal tubules.
    Goralski KB; Sitar DS
    J Pharmacol Exp Ther; 1999 Jul; 290(1):295-302. PubMed ID: 10381790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.