These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 7473225)

  • 1. Modification by protons of frog skeletal muscle KATP channels: effects on ion conduction and nucleotide inhibition.
    Vivaudou M; Forestier C
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):629-45. PubMed ID: 7473225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of action of K channel openers on skeletal muscle KATP channels. Interactions with nucleotides and protons.
    Forestier C; Pierrard J; Vivaudou M
    J Gen Physiol; 1996 Apr; 107(4):489-502. PubMed ID: 8722562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface charge and properties of cardiac ATP-sensitive K+ channels.
    Deutsch N; Matsuoka S; Weiss JN
    J Gen Physiol; 1994 Oct; 104(4):773-800. PubMed ID: 7836941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of ATP-sensitive K+ channels of mouse skeletal muscle by disopyramide.
    Moser C; Hehl S; Neumcke B
    Eur J Pharmacol; 1995 Sep; 284(1-2):35-41. PubMed ID: 8549634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation by Mg2+ and ADP of ATP-sensitive potassium channels in frog skeletal muscle.
    Forestier C; Vivaudou M
    J Membr Biol; 1993 Feb; 132(1):87-94. PubMed ID: 8459449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Similarity of ATP-dependent K+ channels in skeletal muscle fibres from normal and mutant mdx mice.
    Allard B; Rougier O
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):319-25. PubMed ID: 9032681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single channel properties of P2X2 purinoceptors.
    Ding S; Sachs F
    J Gen Physiol; 1999 May; 113(5):695-720. PubMed ID: 10228183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of intracellular pH on ATP-dependent potassium channels of frog skeletal muscle.
    Davies NW; Standen NB; Stanfield PR
    J Physiol; 1992 Jan; 445():549-68. PubMed ID: 1501145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide modulation of the activity of rat heart ATP-sensitive K+ channels in isolated membrane patches.
    Lederer WJ; Nichols CG
    J Physiol; 1989 Dec; 419():193-211. PubMed ID: 2621629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons.
    Davies NW
    Nature; 1990 Jan; 343(6256):375-7. PubMed ID: 2153936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular K+ activates a K(+)- and H(+)-permeable conductance in frog taste receptor cells.
    Kolesnikov SS; Margolskee RF
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):415-32. PubMed ID: 9518702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-talk between ATP-regulated K+ channels and Na+ transport via cellular metabolism in frog skin principal cells.
    Urbach V; Van Kerkhove E; Maguire D; Harvey BJ
    J Physiol; 1996 Feb; 491 ( Pt 1)(Pt 1):99-109. PubMed ID: 9011625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent fading of the activation of KATP channels, induced by aprikalim and nucleotides, in excised membrane patches from cardiac myocytes.
    Thuringer D; Cavero I; Coraboeuf E
    Br J Pharmacol; 1995 May; 115(1):117-27. PubMed ID: 7647966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of tolbutamide and cytosolic nucleotides in controlling the ATP-sensitive K+ channel in mouse beta-cells.
    Schwanstecher C; Dickel C; Panten U
    Br J Pharmacol; 1994 Jan; 111(1):302-10. PubMed ID: 8012711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: a reinterpretation.
    Gribble FM; Tucker SJ; Ashcroft FM
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):35-45. PubMed ID: 9350615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of K+ channels by intracellular ATP in human neocortical neurons.
    Jiang C; Haddad GG
    J Neurophysiol; 1997 Jan; 77(1):93-102. PubMed ID: 9120601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of ATP-dependent K+ channels by metabolic poisoning in adult mouse skeletal muscle: role of intracellular Mg(2+) and pH.
    Allard B; Lazdunski M; Rougier O
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):283-96. PubMed ID: 7666359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-regulated K+ channels are modulated by intracellular H+ in guinea-pig ventricular cells.
    Koyano T; Kakei M; Nakashima H; Yoshinaga M; Matsuoka T; Tanaka H
    J Physiol; 1993 Apr; 463():747-66. PubMed ID: 8246204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage dependent inhibition of ATP sensitive potassium channels by flecainide in guinea pig ventricular cells.
    Wang DW; Sato T; Arita M
    Cardiovasc Res; 1995 Apr; 29(4):520-5. PubMed ID: 7796446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular acidification and ADP enhance nicorandil induction of ATP sensitive potassium channel current in cardiomyocytes.
    Jahangir A; Terzic A; Kurachi Y
    Cardiovasc Res; 1994 Jun; 28(6):831-5. PubMed ID: 7923287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.