BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 7473529)

  • 41. Calmodulin participation in oxygen radical-induced cardiac sarcoplasmic reticulum calcium uptake reduction.
    Okabe E; Kato Y; Sasaki H; Saito G; Hess ML; Ito H
    Arch Biochem Biophys; 1987 Jun; 255(2):464-8. PubMed ID: 3036009
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensitivity to oxidants of mitochondrial and sarcoplasmic reticular calcium uptake in saponin-treated cardiac myocytes.
    Kaminishi T; Kako KJ
    Basic Res Cardiol; 1989; 84(3):282-90. PubMed ID: 2548470
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of reactive oxygen species on aspects of excitation-contraction coupling in chemically skinned rabbit diaphragm muscle fibres.
    Darnley GM; Duke AM; Steele DS; MacFarlane NG
    Exp Physiol; 2001 Mar; 86(2):161-8. PubMed ID: 11429630
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitroxyl increases force development in rat cardiac muscle.
    Dai T; Tian Y; Tocchetti CG; Katori T; Murphy AM; Kass DA; Paolocci N; Gao WD
    J Physiol; 2007 May; 580(Pt.3):951-60. PubMed ID: 17331988
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Effect of luliberin on the Ca-accumulating capacity of the myocardial membranes of the rat heart].
    Kravtsov GM; Orlov SN; Pokudin NI
    Biull Eksp Biol Med; 1980 Aug; 90(8):135-7. PubMed ID: 6996760
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanisms that produce rapid damage to myofilaments of amphibian skeletal muscle.
    Duncan CJ
    Muscle Nerve; 1989 Mar; 12(3):210-8. PubMed ID: 2657416
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of reactive oxygen species and Ca(2+) dissociation from the myofilaments in determination of Ca(2+) wave propagation in rat cardiac muscle.
    Miura M; Murai N; Hattori T; Nagano T; Stuyvers BD; Shindoh C
    J Mol Cell Cardiol; 2013 Mar; 56():97-105. PubMed ID: 23266595
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of hydrogen peroxide and hydroxyl free radical-induced intracellular acidification in cultured rat cardiac myoblasts.
    Wu ML; Tsai KL; Wang SM; Wu JC; Wang BS; Lee YT
    Circ Res; 1996 Apr; 78(4):564-72. PubMed ID: 8635213
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ROS regulation of microdomain Ca(2+) signalling at the dyads.
    Zhang H; Gomez AM; Wang X; Yan Y; Zheng M; Cheng H
    Cardiovasc Res; 2013 May; 98(2):248-58. PubMed ID: 23455546
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of pH and inorganic phosphate on rigor tension in chemically skinned rat ventricular trabeculae.
    Smith GL; Steele DS
    J Physiol; 1994 Aug; 478 Pt 3(Pt 3):505-12. PubMed ID: 7965860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cardiovascular actions of taurine.
    Huxtable RJ; Sebring LA
    Prog Clin Biol Res; 1983; 125():5-37. PubMed ID: 6348796
    [No Abstract]   [Full Text] [Related]  

  • 52. Influence of exogenously generated oxidant species on myocardial function.
    Blaustein AS; Schine L; Brooks WW; Fanburg BL; Bing OH
    Am J Physiol; 1986 Apr; 250(4 Pt 2):H595-9. PubMed ID: 3754391
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of reactive oxygen species on myofilament function in a rabbit coronary artery ligation model of heart failure.
    MacFarlane NG; Takahashi S; Wilson G; Okabe E; Miller DJ
    Pflugers Arch; 1999 Aug; 438(3):289-98. PubMed ID: 10398858
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of Oxygen Free Radicals on Cardiac Contractile Activity and Sarcolemmal Na(+)-Ca(2+) Exchange.
    Matsubara T; Dhalla NS
    J Cardiovasc Pharmacol Ther; 1996 Jul; 1(3):211-218. PubMed ID: 10684419
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [The regulatory role of oxygen radicals in myocardial cells].
    Kapel'ko VI
    Ross Fiziol Zh Im I M Sechenova; 2004 Jun; 90(6):681-92. PubMed ID: 15335159
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The use of Ca-transient to evaluate Ca
    Lookin O
    Clin Exp Pharmacol Physiol; 2020 Nov; 47(11):1824-1833. PubMed ID: 32654202
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A model for the oxygen-paradox in mouse cardiac muscle.
    Duncan CJ; Rudge MF
    Comp Biochem Physiol A Comp Physiol; 1989; 94(4):667-71. PubMed ID: 2575953
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anthrax lethal toxin suppresses murine cardiomyocyte contractile function and intracellular Ca2+ handling via a NADPH oxidase-dependent mechanism.
    Kandadi MR; Hua Y; Ma H; Li Q; Kuo SR; Frankel AE; Ren J
    PLoS One; 2010 Oct; 5(10):e13335. PubMed ID: 20967205
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dexrazoxane pre-treatment protects skinned rat cardiac trabeculae against delayed doxorubicin-induced impairment of crossbridge kinetics.
    de Beer EL; Bottone AE; van Rijk MC; van der Velden J; Voest EE
    Br J Pharmacol; 2002 Apr; 135(7):1707-14. PubMed ID: 11934811
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intracellular effects of free radicals and reactive oxygen species in cardiac muscle.
    Miller DJ; MacFarlane NG
    J Hum Hypertens; 1995 Jun; 9(6):465-73. PubMed ID: 7473529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.