BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 7473529)

  • 61. The effect of oxygen free radicals on calcium permeability and calcium loading at steady state in cardiac sarcoplasmic reticulum.
    Okabe E; Odajima C; Taga R; Kukreja RC; Hess ML; Ito H
    Mol Pharmacol; 1988 Sep; 34(3):388-94. PubMed ID: 2843752
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sarcoplasmic reticulum and myofilament function in chemically-treated ventricular trabeculae from patients with heart failure.
    Denvir MA; MacFarlane NG; Cobbe SM; Miller DJ
    Cardiovasc Res; 1995 Sep; 30(3):377-85. PubMed ID: 7585829
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The role of sarcoplasmic reticulum and Na-Ca exchange in the Ca2+ extrusion from the resting myocytes of guinea-pig heart: comparison with rat.
    Wolska BM; Lewartowski B
    J Mol Cell Cardiol; 1993 Jan; 25(1):75-91. PubMed ID: 8441183
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Functional coupling between sarcoplasmic reticulum and Na/Ca exchange in single myocytes of guinea-pig and rat heart.
    Janiak R; Lewartowski B; Langer GA
    J Mol Cell Cardiol; 1996 Feb; 28(2):253-64. PubMed ID: 8729058
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock.
    Ichinose F; Buys ES; Neilan TG; Furutani EM; Morgan JG; Jassal DS; Graveline AR; Searles RJ; Lim CC; Kaneki M; Picard MH; Scherrer-Crosbie M; Janssens S; Liao R; Bloch KD
    Circ Res; 2007 Jan; 100(1):130-9. PubMed ID: 17138944
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Force-frequency relationship in intact mammalian ventricular myocardium: physiological and pathophysiological relevance.
    Endoh M
    Eur J Pharmacol; 2004 Oct; 500(1-3):73-86. PubMed ID: 15464022
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Possible significance of free oxygen radicals for reperfusion injury].
    Becker BF; Massoudy P; Permanetter B; Raschke P; Zahler S
    Z Kardiol; 1993; 82 Suppl 5():49-58. PubMed ID: 8154162
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The SR-mitochondria interaction: a new player in cardiac pathophysiology.
    Ruiz-Meana M; Fernandez-Sanz C; Garcia-Dorado D
    Cardiovasc Res; 2010 Oct; 88(1):30-9. PubMed ID: 20615915
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mechanisms that produce rapid damage to myofilaments of amphibian skeletal muscle.
    Duncan CJ
    Muscle Nerve; 1989 Mar; 12(3):210-8. PubMed ID: 2657416
    [TBL] [Abstract][Full Text] [Related]  

  • 70. ROS regulation of microdomain Ca(2+) signalling at the dyads.
    Zhang H; Gomez AM; Wang X; Yan Y; Zheng M; Cheng H
    Cardiovasc Res; 2013 May; 98(2):248-58. PubMed ID: 23455546
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cardiovascular actions of taurine.
    Huxtable RJ; Sebring LA
    Prog Clin Biol Res; 1983; 125():5-37. PubMed ID: 6348796
    [No Abstract]   [Full Text] [Related]  

  • 72. [The regulatory role of oxygen radicals in myocardial cells].
    Kapel'ko VI
    Ross Fiziol Zh Im I M Sechenova; 2004 Jun; 90(6):681-92. PubMed ID: 15335159
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Intracellular effects of free radicals and reactive oxygen species in cardiac muscle.
    Miller DJ; MacFarlane NG
    J Hum Hypertens; 1995 Jun; 9(6):465-73. PubMed ID: 7473529
    [TBL] [Abstract][Full Text] [Related]  

  • 74.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 75.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 76.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 77.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 78.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 79.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.