These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 7473737)
1. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases. Murphy JE; Tibbitts TT; Kantrowitz ER J Mol Biol; 1995 Nov; 253(4):604-17. PubMed ID: 7473737 [TBL] [Abstract][Full Text] [Related]
2. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Wang J; Stieglitz KA; Kantrowitz ER Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627 [TBL] [Abstract][Full Text] [Related]
3. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase. Le Du MH; Lamoure C; Muller BH; Bulgakov OV; Lajeunesse E; Ménez A; Boulain JC J Mol Biol; 2002 Mar; 316(4):941-53. PubMed ID: 11884134 [TBL] [Abstract][Full Text] [Related]
4. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase. Tibbitts TT; Murphy JE; Kantrowitz ER J Mol Biol; 1996 Apr; 257(3):700-15. PubMed ID: 8648634 [TBL] [Abstract][Full Text] [Related]
5. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation. Hehir MJ; Murphy JE; Kantrowitz ER J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386 [TBL] [Abstract][Full Text] [Related]
6. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Stec B; Holtz KM; Kantrowitz ER J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454 [TBL] [Abstract][Full Text] [Related]
7. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites. Ma L; Kantrowitz ER Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582 [TBL] [Abstract][Full Text] [Related]
8. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102. Stec B; Hehir MJ; Brennan C; Nolte M; Kantrowitz ER J Mol Biol; 1998 Apr; 277(3):647-62. PubMed ID: 9533886 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of the purine nucleoside phosphorylase (PNP) from Cellulomonas sp. and its implication for the mechanism of trimeric PNPs. Tebbe J; Bzowska A; Wielgus-Kutrowska B; Schröder W; Kazimierczuk Z; Shugar D; Saenger W; Koellner G J Mol Biol; 1999 Dec; 294(5):1239-55. PubMed ID: 10600382 [TBL] [Abstract][Full Text] [Related]
10. Processing of Escherichia coli alkaline phosphatase: role of the primary structure of the signal peptide cleavage region. Karamyshev AL; Karamysheva ZN; Kajava AV; Ksenzenko VN; Nesmeyanova MA J Mol Biol; 1998 Apr; 277(4):859-70. PubMed ID: 9545377 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of alkaline phosphatase from the Antarctic bacterium TAB5. Wang E; Koutsioulis D; Leiros HK; Andersen OA; Bouriotis V; Hough E; Heikinheimo P J Mol Biol; 2007 Mar; 366(4):1318-31. PubMed ID: 17198711 [TBL] [Abstract][Full Text] [Related]
12. DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites. Horton NC; Perona JJ Biochemistry; 2004 Jun; 43(22):6841-57. PubMed ID: 15170321 [TBL] [Abstract][Full Text] [Related]
13. Evolutionary conservation of enzymatic catalysis: quantitative comparison of the effects of mutation of aligned residues in Saccharomyces cerevisiae and Escherichia coli inorganic pyrophosphatases on enzymatic activity. Pohjanjoki P; Lahti R; Goldman A; Cooperman BS Biochemistry; 1998 Feb; 37(7):1754-61. PubMed ID: 9485300 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis. Waksman G; Krishna TS; Williams CH; Kuriyan J J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095 [TBL] [Abstract][Full Text] [Related]
15. Crystal structures of Escherichia coli aspartate aminotransferase in two conformations. Comparison of an unliganded open and two liganded closed forms. Jäger J; Moser M; Sauder U; Jansonius JN J Mol Biol; 1994 Jun; 239(2):285-305. PubMed ID: 8196059 [TBL] [Abstract][Full Text] [Related]
16. The structure of nucleotidylated histidine-166 of galactose-1-phosphate uridylyltransferase provides insight into phosphoryl group transfer. Wedekind JE; Frey PA; Rayment I Biochemistry; 1996 Sep; 35(36):11560-9. PubMed ID: 8794735 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase: a new structural family with the P-loop nucleoside triphosphate hydrolase fold. Matte A; Goldie H; Sweet RM; Delbaere LT J Mol Biol; 1996 Feb; 256(1):126-43. PubMed ID: 8609605 [TBL] [Abstract][Full Text] [Related]
18. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design. Krajewski WW; Collins R; Holmberg-Schiavone L; Jones TA; Karlberg T; Mowbray SL J Mol Biol; 2008 Jan; 375(1):217-28. PubMed ID: 18005987 [TBL] [Abstract][Full Text] [Related]
19. A flexible loop at the dimer interface is a part of the active site of the adjacent monomer of Escherichia coli orotate phosphoribosyltransferase. Henriksen A; Aghajari N; Jensen KF; Gajhede M Biochemistry; 1996 Mar; 35(12):3803-9. PubMed ID: 8620002 [TBL] [Abstract][Full Text] [Related]
20. The high-resolution X-ray crystallographic structure of the ferritin (EcFtnA) of Escherichia coli; comparison with human H ferritin (HuHF) and the structures of the Fe(3+) and Zn(2+) derivatives. Stillman TJ; Hempstead PD; Artymiuk PJ; Andrews SC; Hudson AJ; Treffry A; Guest JR; Harrison PM J Mol Biol; 2001 Mar; 307(2):587-603. PubMed ID: 11254384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]