These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 7473753)

  • 41. Electron paramagnetic resonance spectroscopy and molecular modelling of the interaction of myelin basic protein (MBP) with calmodulin (CaM)-diversity and conformational adaptability of MBP CaM-targets.
    Polverini E; Boggs JM; Bates IR; Harauz G; Cavatorta P
    J Struct Biol; 2004 Dec; 148(3):353-69. PubMed ID: 15522783
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct measurement of the aspartic acid 26 pKa for reduced Escherichia coli thioredoxin by 13C NMR.
    Jeng MF; Dyson HJ
    Biochemistry; 1996 Jan; 35(1):1-6. PubMed ID: 8555161
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The CXXC motif at the N terminus of an alpha-helical peptide.
    Iqbalsyah TM; Moutevelis E; Warwicker J; Errington N; Doig AJ
    Protein Sci; 2006 Aug; 15(8):1945-50. PubMed ID: 16877711
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo.
    Nelson JW; Creighton TE
    Biochemistry; 1994 May; 33(19):5974-83. PubMed ID: 8180227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conversion of a catalytic into a structural disulfide bond by circular permutation.
    Hennecke J; Glockshuber R
    Biochemistry; 1998 Dec; 37(50):17590-7. PubMed ID: 9860875
    [TBL] [Abstract][Full Text] [Related]  

  • 46. C-capping and helix stability: the Pro C-capping motif.
    Prieto J; Serrano L
    J Mol Biol; 1997 Nov; 274(2):276-88. PubMed ID: 9398533
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conformation, stability, and active-site cysteine titrations of Escherichia coli D26A thioredoxin probed by Raman spectroscopy.
    Vohník S; Hanson C; Tuma R; Fuchs JA; Woodward C; Thomas GJ
    Protein Sci; 1998 Jan; 7(1):193-200. PubMed ID: 9514274
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Side chain-backbone hydrogen bonding contributes to helix stability in peptides derived from an alpha-helical region of carboxypeptidase A.
    Bruch MD; Dhingra MM; Gierasch LM
    Proteins; 1991; 10(2):130-9. PubMed ID: 1896426
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemical modification of the RTEM-1 thiol beta-lactamase by thiol-selective reagents: evidence for activation of the primary nucleophile of the beta-lactamase active site by adjacent functional groups.
    Knap AK; Pratt RF
    Proteins; 1989; 6(3):316-23. PubMed ID: 2695930
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elimination of all charged residues in the vicinity of the active-site helix of the disulfide oxidoreductase DsbA. Influence of electrostatic interactions on stability and redox properties.
    Jacobi A; Huber-Wunderlich M; Hennecke J; Glockshuber R
    J Biol Chem; 1997 Aug; 272(35):21692-9. PubMed ID: 9268296
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Factors affecting protein thiol reactivity and specificity in peroxide reduction.
    Ferrer-Sueta G; Manta B; Botti H; Radi R; Trujillo M; Denicola A
    Chem Res Toxicol; 2011 Apr; 24(4):434-50. PubMed ID: 21391663
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the active site cysteine residues of the thioredoxin-like domains of protein disulfide isomerase.
    Darby NJ; Creighton TE
    Biochemistry; 1995 Dec; 34(51):16770-80. PubMed ID: 8527452
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The contribution of residue ion pairs to the helical stability of a model peptide.
    Stellwagen E; Park SH; Shalongo W; Jain A
    Biopolymers; 1992 Sep; 32(9):1193-200. PubMed ID: 1420987
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo.
    Zapun A; Cooper L; Creighton TE
    Biochemistry; 1994 Feb; 33(7):1907-14. PubMed ID: 8110795
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Understanding the -C-X1-X2-C- motif in the active site of the thioredoxin superfamily: E. coli DsbA and its mutants as a model system.
    Karshikoff A; Nilsson L; Foloppe N
    Biochemistry; 2013 Aug; 52(34):5730-45. PubMed ID: 23879632
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sulfate ion interaction with 'anion recognition' short peptide motif at the N-terminus of an isolated helix: A conformational landscape.
    Sheet T; Banerjee R
    J Struct Biol; 2010 Sep; 171(3):345-52. PubMed ID: 20570734
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Redox potentials of active-site bis(cysteinyl) fragments of thiol-protein oxidoreductases.
    Siedler F; Rudolph-Böhner S; Doi M; Musiol HJ; Moroder L
    Biochemistry; 1993 Jul; 32(29):7488-95. PubMed ID: 8338847
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The design and production of semisynthetic ribonucleases with increased thermostability by incorporation of S-peptide analogues with enhanced helical stability.
    Mitchinson C; Baldwin RL
    Proteins; 1986 Sep; 1(1):23-33. PubMed ID: 3449849
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Peculiar spectroscopic and kinetic properties of Cys-47 in human placental glutathione transferase. Evidence for an atypical thiolate ion pair near the active site.
    Lo Bello M; Parker MW; Desideri A; Polticelli F; Falconi M; Del Boccio G; Pennelli A; Federici G; Ricci G
    J Biol Chem; 1993 Sep; 268(25):19033-8. PubMed ID: 8360190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.