These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 7474882)

  • 21. [Application of microsphere technic to various visceral circulation. II. 3. The kidney].
    Abe Y; Yamamoto K; Kishimoto T
    Kokyu To Junkan; 1974; 22(7-8):600-2. PubMed ID: 4610681
    [No Abstract]   [Full Text] [Related]  

  • 22. Use of impedance plethysmography to continually monitor bone marrow blood flow.
    Montgomery LD; McEwen GN; Gerber RL; Cann CE; Morey ER
    Aviat Space Environ Med; 1984 Jul; 55(7):604-11. PubMed ID: 6466256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Instant myocardial blood flow monitor: its calibration and assessment of flow capacity of the intracoronary shunt tube.
    Kamiya H; Watanabe G; Kanamori T; Ishikawa N; Terada T; Kawakami K
    Ann Thorac Surg; 2004 Jul; 78(1):167-72. PubMed ID: 15223423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observations on the validity of using "NEN-TRAC" microspheres for measuring organ blood flow.
    Hales JR; King RB; Fawcett AA
    Pflugers Arch; 1979 Apr; 379(3):295-6. PubMed ID: 572542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A technique for tracking intravascular fluorescent microspheres for the determination of arteriolar blood flow in rats.
    Lynn CN; Ahmed J
    Biomed Sci Instrum; 2006; 42():90-5. PubMed ID: 16817591
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bone blood flow in the rat using arteriolar blockade: comparisons between labelled resin particles and microspheres.
    Revell WJ; Brookes M
    J Anat; 1993 Jun; 182 ( Pt 3)(Pt 3):305-12. PubMed ID: 8226285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Data reduction in multiple blood flow measurements using the radioactive microsphere-technique.
    Schosser R; Arfors KE; Messmer K
    Bibl Anat; 1979; (18):198-200. PubMed ID: 496826
    [No Abstract]   [Full Text] [Related]  

  • 28. Comparison of PET with radioactive microspheres to assess pulmonary blood flow.
    Richard JC; Janier M; Decailliot F; Le Bars D; Lavenne F; Berthier V; Lionnet M; Cinotti L; Annat G; Guérin C
    J Nucl Med; 2002 Aug; 43(8):1063-71. PubMed ID: 12163633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of regional myocardial blood flow using fluorescent microspheres.
    Austin GE; Tuvlin MB; Martino-Salzman D; Hunter RL; Justicz AG; Thompson NK; Brooks AC
    Am J Cardiovasc Pathol; 1993; 4(4):352-7. PubMed ID: 8305198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison between measurements of maternal placental blood flow with dynamic placental scintigraphy and radioactive microspheres.
    Skjöldebrand A; Jansson T; Kjellmer I; Lunell N; Nylund L; Sarby B; Thornström S
    Placenta; 1989; 10(1):95-102. PubMed ID: 2717547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exercise-induced hyperemia unmasks regional blood flow deficit in experimental hindlimb ischemia.
    Brevetti LS; Paek R; Brady SE; Hoffman JI; Sarkar R; Messina LM
    J Surg Res; 2001 Jun; 98(1):21-6. PubMed ID: 11368533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of the fluorescent microsphere technique for quantifying regional blood flow in small mammals.
    Deveci D; Egginton S
    Exp Physiol; 1999 Jul; 84(4):615-30. PubMed ID: 10481220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescent microsphere technique to measure cerebral blood flow in the rat.
    De Visscher G; Haseldonckx M; Flameng W
    Nat Protoc; 2006; 1(4):2162-70. PubMed ID: 17487208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cochlear blood flow studied with microspheres. A comparison between two different modifications of the microsphere method.
    Larsen HC; Angelborg C; Axelsson A
    Acta Otolaryngol; 1985; 99(5-6):537-42. PubMed ID: 4024902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Testicular blood flow in monkeys as measured by xenon clearance and radioactive microspheres.
    Harrison RM; Lewis RW; Roberts JA
    J Med Primatol; 1985; 14(1):49-55. PubMed ID: 3981622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accuracy of blood flow values determined by arterial spin labeling: a validation study in isolated porcine kidneys.
    Warmuth C; Nagel S; Hegemann O; Wlodarczyk W; Lüdemann L
    J Magn Reson Imaging; 2007 Aug; 26(2):353-8. PubMed ID: 17654732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescent microspheres reveal different regional blood flow in hyperacutely rejected nontransgenic and hDAF pig hearts.
    Brandl U; Erhardt M; Jöckle H; Michel S; Thein E; Bittmann I; Brenner P; Burdorf L; Hammer C; Schmoeckel M; Reichart B
    Transplant Proc; 2006 Apr; 38(3):733-4. PubMed ID: 16647457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of absolute myocardial blood flow during first-pass MR perfusion imaging using a dual-bolus injection technique: comparison to single-bolus injection method.
    Christian TF; Aletras AH; Arai AE
    J Magn Reson Imaging; 2008 Jun; 27(6):1271-7. PubMed ID: 18421683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relative error and variability in blood flow measurements with radiolabeled microspheres.
    Dole WP; Jackson DL; Rosenblatt JI; Thompson WL
    Am J Physiol; 1982 Sep; 243(3):H371-8. PubMed ID: 7114269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of renal blood flow in the rat.
    Hsu CH; Kurtz TW; Preuss HG; Weller JM
    Proc Soc Exp Biol Med; 1975 Jun; 149(2):470-2. PubMed ID: 1153422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.