These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 7475089)

  • 1. Analytical solutions of the dinucleotide probability after and before random mutations.
    Arquès DG; Michel CJ
    J Theor Biol; 1995 Aug; 175(4):533-44. PubMed ID: 7475089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical expression of the purine/pyrimidine autocorrelation function after and before random mutations.
    Arques DG; Michel CJ
    Math Biosci; 1994 Sep; 123(1):103-25. PubMed ID: 7949744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and simulation of shifted periodicities common to protein coding genes of eukaryotes, prokaryotes and viruses.
    Arquès DG; Lapayre JC; Michel CJ
    J Theor Biol; 1995 Feb; 172(3):279-91. PubMed ID: 7715198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution probabilities and phylogenetic distance of dinucleotides.
    Michel CJ
    J Theor Biol; 2007 Nov; 249(2):271-7. PubMed ID: 17884102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A complementary circular code in the protein coding genes.
    Arquès DG; Michel CJ
    J Theor Biol; 1996 Sep; 182(1):45-58. PubMed ID: 8917736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and simulation of new non-random statistical properties common to different populations of eukaryotic non-coding genes.
    Arquès DG; Michel CJ; Orieux K
    J Theor Biol; 1993 Apr; 161(3):329-42. PubMed ID: 8331957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical expression of the purine/pyrimidine codon probability after and before random mutations.
    Arquès DG; Michel CJ
    Bull Math Biol; 1993 Nov; 55(6):1025-38. PubMed ID: 8281128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evolutionary analytical model of a complementary circular code simulating the protein coding genes, the 5' and 3' regions.
    Arquès DG; Fallot JP; Michel CJ
    Bull Math Biol; 1998 Jan; 60(1):163-94. PubMed ID: 9530018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analytical model of gene evolution with 9 mutation parameters: an application to the amino acids coded by the common circular code.
    Michel CJ
    Bull Math Biol; 2007 Feb; 69(2):677-98. PubMed ID: 16952018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Codon phylogenetic distance.
    Michel CJ
    Comput Biol Chem; 2007 Feb; 31(1):36-43. PubMed ID: 17257898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stochastic model of gene evolution with chaotic mutations.
    Bahi JM; Michel CJ
    J Theor Biol; 2008 Nov; 255(1):53-63. PubMed ID: 18706428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analytical model of gene evolution with six mutation parameters: an application to archaeal circular codes.
    Frey G; Michel CJ
    Comput Biol Chem; 2006 Feb; 30(1):1-11. PubMed ID: 16324886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stochastic gene evolution model with time dependent mutations.
    Bahi JM; Michel CJ
    Bull Math Biol; 2004 Jul; 66(4):763-78. PubMed ID: 15210317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stochastic model of gene evolution with time dependent pseudochaotic mutations.
    Bahi JM; Michel CJ
    Bull Math Biol; 2009 Apr; 71(3):681-700. PubMed ID: 19198957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical classification of BRCA1 and BRCA2 DNA sequence variants: the value of cytokeratin profiles and evolutionary analysis--a report from the kConFab Investigators.
    Spurdle AB; Lakhani SR; Healey S; Parry S; Da Silva LM; Brinkworth R; Hopper JL; Brown MA; Babikyan D; Chenevix-Trench G; Tavtigian SV; Goldgar DE;
    J Clin Oncol; 2008 Apr; 26(10):1657-63. PubMed ID: 18375895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evolutionary model of a complementary circular code.
    Arquès DG; Fallot JP; Michel CJ
    J Theor Biol; 1997 Mar; 185(2):241-53. PubMed ID: 9135803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustered DNA lesion sites as a source of mutations during human colorectal tumourigenesis.
    Radford IR; Lobachevsky PN
    Mutat Res; 2008 Nov; 646(1-2):60-8. PubMed ID: 18824008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large majority of single-nucleotide mutations along the dystrophin gene can be explained by more than one mechanism of mutagenesis.
    Todorova A; Danieli GA
    Hum Mutat; 1997; 9(6):537-47. PubMed ID: 9195228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splicing mutations at the HPRT locus in human T-lymphocytes in vivo.
    Osterholm AM; Hou SM
    Environ Mol Mutagen; 1998; 32(1):25-32. PubMed ID: 9707095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA.
    Rand DM; Kann LM
    Genetica; 1998; 102-103(1-6):393-407. PubMed ID: 9720291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.