These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 7475237)

  • 1. Evaluation of a video tracking device for measurement of horizontal and vertical eye rotations during locomotion.
    DiScenna AO; Das V; Zivotofsky AZ; Seidman SH; Leigh RJ
    J Neurosci Methods; 1995 May; 58(1-2):89-94. PubMed ID: 7475237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recording three-dimensional eye movements: scleral search coils versus video oculography.
    Houben MM; Goumans J; van der Steen J
    Invest Ophthalmol Vis Sci; 2006 Jan; 47(1):179-87. PubMed ID: 16384960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recording eye movements with video-oculography and scleral search coils: a direct comparison of two methods.
    van der Geest JN; Frens MA
    J Neurosci Methods; 2002 Mar; 114(2):185-95. PubMed ID: 11856570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of viewing distance on the generation of vertical eye movements during locomotion.
    Moore ST; Hirasaki E; Cohen B; Raphan T
    Exp Brain Res; 1999 Dec; 129(3):347-61. PubMed ID: 10591907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Video-based head movement compensation for novel haploscopic eye-tracking apparatus.
    Irsch K; Ramey NA; Kurz A; Guyton DL; Ying HS
    Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1152-7. PubMed ID: 18978348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of video and magnetic search coil recordings of mouse eye movements.
    Stahl JS; van Alphen AM; De Zeeuw CI
    J Neurosci Methods; 2000 Jun; 99(1-2):101-10. PubMed ID: 10936649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous recordings of human microsaccades and drifts with a contemporary video eye tracker and the search coil technique.
    McCamy MB; Otero-Millan J; Leigh RJ; King SA; Schneider RM; Macknik SL; Martinez-Conde S
    PLoS One; 2015; 10(6):e0128428. PubMed ID: 26035820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring eye movements during locomotion: filtering techniques for obtaining velocity signals from a video-based eye monitor.
    Das VE; Thomas CW; Zivotofsky AZ; Leigh RJ
    J Vestib Res; 1996; 6(6):455-61. PubMed ID: 8968972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocities of vertical saccades with different eye movement recording methods.
    Yee RD; Schiller VL; Lim V; Baloh FG; Baloh RW; Honrubia V
    Invest Ophthalmol Vis Sci; 1985 Jul; 26(7):938-44. PubMed ID: 4008210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of saccadic eye movements using an infrared video system in human subjects.
    Kubo T; Saika T; Sakata Y; Morita Y; Matsunaga T; Kasahara T
    Acta Otolaryngol Suppl; 1991; 481():382-7. PubMed ID: 1927423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Torsional and vertical eye movements during head tilt dynamic characteristics.
    Pansell T; Schworm HD; Ygge J
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):2986-90. PubMed ID: 12824242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pupil size influences the eye-tracker signal during saccades.
    Nyström M; Hooge I; Andersson R
    Vision Res; 2016 Apr; 121():95-103. PubMed ID: 26940030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Otolith and semicircular canal contributions to the human binocular response to roll oscillation.
    Jáuregui-Renaud K; Faldon M; Clarke AH; Bronstein AM; Gresty MA
    Acta Otolaryngol; 1998 Mar; 118(2):170-6. PubMed ID: 9583783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1996 Jun; 75(6):2405-24. PubMed ID: 8793753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial organization of linear vestibuloocular reflexes of the rat: responses during horizontal and vertical linear acceleration.
    Hess BJ; Dieringer N
    J Neurophysiol; 1991 Dec; 66(6):1805-18. PubMed ID: 1812218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity of Listing's law during fixations, saccades, smooth pursuit eye movements, and blinks.
    Straumann D; Zee DS; Solomon D; Kramer PD
    Exp Brain Res; 1996 Nov; 112(1):135-46. PubMed ID: 8951416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PC-based high-speed video-oculography for measuring rapid eye movements in mice.
    Sakatani T; Isa T
    Neurosci Res; 2004 May; 49(1):123-31. PubMed ID: 15099710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real time binocular detection of horizontal vertical and torsional eye movements by an infra red video-eye tracker.
    Kingma H; Gullikers H; de Jong I; Jongen R; Dolmans M; Stegeman P
    Acta Otolaryngol Suppl; 1995; 520 Pt 1():9-15. PubMed ID: 8749067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring three dimensions of eye movement in dynamic situations by means of videooculography.
    Scherer H; Teiwes W; Clarke AH
    Acta Otolaryngol; 1991; 111(2):182-7. PubMed ID: 2068899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do pupil-based binocular video eye trackers reliably measure vergence?
    Hooge ITC; Hessels RS; Nyström M
    Vision Res; 2019 Mar; 156():1-9. PubMed ID: 30641092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.