These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 7475351)
21. Diquat-dependent protein carbonyl formation. Identification of lipid-dependent and lipid-independent pathways. Blakeman DP; Ryan TP; Jolly RA; Petry TW Biochem Pharmacol; 1995 Sep; 50(7):929-35. PubMed ID: 7575675 [TBL] [Abstract][Full Text] [Related]
22. Simultaneous production of carbon monoxide and thiobarbituric acid reactive substances in rat tissue preparations by an iron-ascorbate system. Vreman HJ; Wong RJ; Sanesi CA; Dennery PA; Stevenson DK Can J Physiol Pharmacol; 1998 Dec; 76(12):1057-65. PubMed ID: 10326826 [TBL] [Abstract][Full Text] [Related]
23. Melatonin inhibits iron-induced epileptic discharges in rats by suppressing peroxidation. Kabuto H; Yokoi I; Ogawa N Epilepsia; 1998 Mar; 39(3):237-43. PubMed ID: 9578039 [TBL] [Abstract][Full Text] [Related]
24. Indenoindole depresses lipofuscin formation in cultured neonatal rat myocardial cells. Marzabadi MR; Jones C; Rydström J Mech Ageing Dev; 1995 Jun; 80(3):189-97. PubMed ID: 7564570 [TBL] [Abstract][Full Text] [Related]
25. Coordinated response of goldfish antioxidant defenses to environmental stress. Bagnyukova TV; Chahrak OI; Lushchak VI Aquat Toxicol; 2006 Jul; 78(4):325-31. PubMed ID: 16735067 [TBL] [Abstract][Full Text] [Related]
26. Autophagy of iron-binding proteins may contribute to the oxidative stress resistance of ARPE-19 cells. Karlsson M; Frennesson C; Gustafsson T; Brunk UT; Nilsson SE; Kurz T Exp Eye Res; 2013 Nov; 116():359-65. PubMed ID: 24416768 [TBL] [Abstract][Full Text] [Related]
27. Effect of reactive oxygen species on lysosomal membrane integrity. A study on a lysosomal fraction. Zdolsek JM; Svensson I Virchows Arch B Cell Pathol Incl Mol Pathol; 1993; 64(6):401-6. PubMed ID: 8148962 [TBL] [Abstract][Full Text] [Related]
28. Thiopalmitic acid-mediated Fe(III)-nitrilotriacetate reduction and lipid peroxidation. Tanaka M; Takada K; Higuchi T; Nakagawa M Biol Pharm Bull; 1996 May; 19(5):678-82. PubMed ID: 8741574 [TBL] [Abstract][Full Text] [Related]
29. Effect of alpha-tocopherol and some metal chelators on lipofuscin accumulation in cultured neonatal rat cardiac myocytes. Marzabadi MR; Sohal RS; Brunk UT Anal Cell Pathol; 1990 Oct; 2(6):333-46. PubMed ID: 2275880 [TBL] [Abstract][Full Text] [Related]
30. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats. Salama SA; Omar HA; Maghrabi IA; AlSaeed MS; EL-Tarras AE Toxicol Appl Pharmacol; 2014 Jan; 274(1):1-6. PubMed ID: 24215938 [TBL] [Abstract][Full Text] [Related]
31. Aging of cardiac myocytes in culture: oxidative stress, lipofuscin accumulation, and mitochondrial turnover. Terman A; Dalen H; Eaton JW; Neuzil J; Brunk UT Ann N Y Acad Sci; 2004 Jun; 1019():70-7. PubMed ID: 15246997 [TBL] [Abstract][Full Text] [Related]
32. Inhibition of in vitro lipid peroxidation by 21-aminosteroids. Evidence for differential mechanisms. Ryan TP; Steenwyk RC; Pearson PG; Petry TW Biochem Pharmacol; 1993 Sep; 46(5):877-84. PubMed ID: 8373438 [TBL] [Abstract][Full Text] [Related]
33. Iron complexing activity of mangiferin, a naturally occurring glucosylxanthone, inhibits mitochondrial lipid peroxidation induced by Fe2+-citrate. Andreu GP; Delgado R; Velho JA; Curti C; Vercesi AE Eur J Pharmacol; 2005 Apr; 513(1-2):47-55. PubMed ID: 15878708 [TBL] [Abstract][Full Text] [Related]
34. Heavy metals and lipofuscinogenesis. A study on myocardial cells cultured under varying oxidative stress. Marzabadi MR; Jones CB Mech Ageing Dev; 1992 Nov; 66(2):159-71. PubMed ID: 1365842 [TBL] [Abstract][Full Text] [Related]
35. The effect of Polbax extract on lipofuscin accumulation in cultured neonatal rat cardiac myocytes. Terman A; Brunk UT Phytother Res; 2002 Mar; 16(2):180-2. PubMed ID: 11933124 [TBL] [Abstract][Full Text] [Related]
36. Roles of catalase and cytochrome c in hydroperoxide-dependent lipid peroxidation and chemiluminescence in rat heart and kidney mitochondria. Radi R; Sims S; Cassina A; Turrens JF Free Radic Biol Med; 1993 Dec; 15(6):653-9. PubMed ID: 8138192 [TBL] [Abstract][Full Text] [Related]
37. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Brunk UT; Terman A Eur J Biochem; 2002 Apr; 269(8):1996-2002. PubMed ID: 11985575 [TBL] [Abstract][Full Text] [Related]
38. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Brunk UT; Terman A Free Radic Biol Med; 2002 Sep; 33(5):611-9. PubMed ID: 12208347 [TBL] [Abstract][Full Text] [Related]
39. Can lipofuscin accumulation be prevented? Kurz T Rejuvenation Res; 2008 Apr; 11(2):441-3. PubMed ID: 18160024 [TBL] [Abstract][Full Text] [Related]
40. Alpha-lipoic acid: antioxidant potency against lipid peroxidation of neural tissues in vitro and implications for diabetic neuropathy. Nickander KK; McPhee BR; Low PA; Tritschler H Free Radic Biol Med; 1996; 21(5):631-9. PubMed ID: 8891666 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]