These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7475369)

  • 1. Modelling the time-keeping function of the central pattern generator for locomotion using artificial sequential neural network.
    Prentice SD; Patla AE; Stacey DA
    Med Biol Eng Comput; 1995 May; 33(3):317-22. PubMed ID: 7475369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic behavior of a neural network model of locomotor control in the lamprey.
    Jung R; Kiemel T; Cohen AH
    J Neurophysiol; 1996 Mar; 75(3):1074-86. PubMed ID: 8867119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple artificial neural network models can generate basic muscle activity patterns for human locomotion at different speeds.
    Prentice SD; Patla AE; Stacey DA
    Exp Brain Res; 1998 Dec; 123(4):474-80. PubMed ID: 9870606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model of a pattern generator for locomotion in mammals.
    Patla AE; Calvert TW; Stein RB
    Am J Physiol; 1985 Apr; 248(4 Pt 2):R484-94. PubMed ID: 3985190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking?
    Minassian K; Hofstoetter US; Dzeladini F; Guertin PA; Ijspeert A
    Neuroscientist; 2017 Dec; 23(6):649-663. PubMed ID: 28351197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and modeling of the locomotor central pattern generator as a network of coupled oscillators.
    Sigvardt KA; Miller WL
    Ann N Y Acad Sci; 1998 Nov; 860():250-65. PubMed ID: 9928317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A movement pattern generator model using artificial neural networks.
    Srinivasan S; Gander RE; Wood HC
    IEEE Trans Biomed Eng; 1992 Jul; 39(7):716-22. PubMed ID: 1516938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional distribution of putative rhythm-generating and pattern-forming components of the mammalian locomotor CPG.
    Griener A; Dyck J; Gosgnach S
    Neuroscience; 2013 Oct; 250():644-50. PubMed ID: 23933310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion.
    Rybak IA; Shevtsova NA; Lafreniere-Roula M; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):617-39. PubMed ID: 17008376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander.
    Ijspeert AJ
    Biol Cybern; 2001 May; 84(5):331-48. PubMed ID: 11357547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Afferent control of central pattern generators: experimental analysis of locomotion in the decerebrate cat.
    Baev KV; Esipenko VB; Shimansky YuP
    Neuroscience; 1991; 43(1):237-47. PubMed ID: 1922769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.
    Nassour J; Hénaff P; Benouezdou F; Cheng G
    Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation.
    Rybak IA; Stecina K; Shevtsova NA; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):641-58. PubMed ID: 17008375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central pattern generators for locomotion control in animals and robots: a review.
    Ijspeert AJ
    Neural Netw; 2008 May; 21(4):642-53. PubMed ID: 18555958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From swimming to walking: a single basic network for two different behaviors.
    Bem T; Cabelguen JM; Ekeberg O; Grillner S
    Biol Cybern; 2003 Feb; 88(2):79-90. PubMed ID: 12567223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation.
    Fukuoka Y; Habu Y; Fukui T
    Biol Cybern; 2013 Dec; 107(6):695-710. PubMed ID: 24132783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and analysis of a new locomotion control neural networks.
    Liu Q; Wang JZ
    Biol Cybern; 2018 Aug; 112(4):345-356. PubMed ID: 29700596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of adaptive behavior in quadruped locomotion.
    Ito S; Yuasa H; Luo ZW; Ito M; Yanagihara D
    Biol Cybern; 1998 May; 78(5):337-47. PubMed ID: 9691263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A generalized locomotion CPG architecture based on oscillatory building blocks.
    Yang Z; França FM
    Biol Cybern; 2003 Jul; 89(1):34-42. PubMed ID: 12836031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring a type of central pattern generator based on Hindmarsh-Rose model: from theory to application.
    Zhang D; Zhang Q; Zhu X
    Int J Neural Syst; 2015 Feb; 25(1):1450028. PubMed ID: 25146328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.