BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7476168)

  • 21. The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi.
    Reverchon S; Expert D; Robert-Baudouy J; Nasser W
    J Bacteriol; 1997 Jun; 179(11):3500-8. PubMed ID: 9171393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu.
    He SY; Lindeberg M; Chatterjee AK; Collmer A
    Proc Natl Acad Sci U S A; 1991 Feb; 88(3):1079-83. PubMed ID: 1992458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. De novo design and evolution of artificial disulfide isomerase enzymes analogous to the bacterial DsbC.
    Arredondo S; Segatori L; Gilbert HF; Georgiou G
    J Biol Chem; 2008 Nov; 283(46):31469-76. PubMed ID: 18782764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi.
    Reverchon S; Nasser W; Robert-Baudouy J
    Mol Microbiol; 1994 Mar; 11(6):1127-39. PubMed ID: 8022282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Informational suppression to investigate structural functional and evolutionary aspects of the Erwinia chrysanthemi cellulase EGZ.
    Bortoli-German I; Haiech J; Chippaux M; Barras F
    J Mol Biol; 1995 Feb; 246(1):82-94. PubMed ID: 7853408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of Erwinia chrysanthemi EC16 pelE::uidA, pelL::uidA, and hrpN::uidA mutants reveals strain-specific atypical regulation of the Hrp type III secretion system.
    Ham JH; Cui Y; Alfano JR; Rodríguez-Palenzuela P; Rojas CM; Chatterjee AK; Collmer A
    Mol Plant Microbe Interact; 2004 Feb; 17(2):184-94. PubMed ID: 14964532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential in vivo roles played by DsbA and DsbC in the formation of protein disulfide bonds.
    Sone M; Akiyama Y; Ito K
    J Biol Chem; 1997 Apr; 272(16):10349-52. PubMed ID: 9099671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo substrate specificity of periplasmic disulfide oxidoreductases.
    Hiniker A; Bardwell JC
    J Biol Chem; 2004 Mar; 279(13):12967-73. PubMed ID: 14726535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein folding in the periplasm in the absence of primary oxidant DsbA: modulation of redox potential in periplasmic space via OmpL porin.
    Dartigalongue C; Nikaido H; Raina S
    EMBO J; 2000 Nov; 19(22):5980-8. PubMed ID: 11080145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of the rhodanese PspE, a single cysteine-containing protein, restores disulphide bond formation to an Escherichia coli strain lacking DsbA.
    Chng SS; Dutton RJ; Denoncin K; Vertommen D; Collet JF; Kadokura H; Beckwith J
    Mol Microbiol; 2012 Sep; 85(5):996-1006. PubMed ID: 22809289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of Tn5tac1 to clone a pel gene encoding a highly alkaline, asparagine-rich pectate lyase isozyme from an Erwinia chrysanthemi EC16 mutant with deletions affecting the major pectate lyase isozymes.
    Alfano JR; Ham JH; Collmer A
    J Bacteriol; 1995 Aug; 177(15):4553-6. PubMed ID: 7635842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Escherichia coli disulfide-forming related proteins: structures, functions and their application in gene engineering for expressing heterologous proteins in Escherichia coli].
    Zhang Z; Huang HL
    Sheng Wu Gong Cheng Xue Bao; 2002 May; 18(3):261-6. PubMed ID: 12192853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: Reconciling two competing pathways.
    Segatori L; Paukstelis PJ; Gilbert HF; Georgiou G
    Proc Natl Acad Sci U S A; 2004 Jul; 101(27):10018-23. PubMed ID: 15220477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC.
    Hiniker A; Collet JF; Bardwell JC
    J Biol Chem; 2005 Oct; 280(40):33785-91. PubMed ID: 16087673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overproduction, purification and characterization of the cellulose-binding domain of the Erwinia chrysanthemi secreted endoglucanase EGZ.
    Brun E; Gans P; Marion D; Barras F
    Eur J Biochem; 1995 Jul; 231(1):142-8. PubMed ID: 7628464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular analysis of the Erwinia chrysanthemi region containing the kdgA and zwf genes.
    Hugouvieux-Cotte-Pattat N; Robert-Baudouy J
    Mol Microbiol; 1994 Jan; 11(1):67-75. PubMed ID: 8145647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A pleîotropic acid phosphatase-deficient mutant of Escherichia coli shows premature termination in the dsbA gene. Use of dsbA::phoA fusions to localize a structurally important domain in DsbA.
    Belin P; Quéméneur E; Boquet PL
    Mol Gen Genet; 1994 Jan; 242(1):23-32. PubMed ID: 8277944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An in vivo pathway for disulfide bond isomerization in Escherichia coli.
    Rietsch A; Belin D; Martin N; Beckwith J
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13048-53. PubMed ID: 8917542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the pelL gene encoding a novel pectate lyase of Erwinia chrysanthemi 3937.
    Lojkowska E; Masclaux C; Boccara M; Robert-Baudouy J; Hugouvieux-Cotte-Pattat N
    Mol Microbiol; 1995 Jun; 16(6):1183-95. PubMed ID: 8577252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roles of cysteine residues of DsbB in its activity to reoxidize DsbA, the protein disulphide bond catalyst of Escherichia coli.
    Kishigami S; Ito K
    Genes Cells; 1996 Feb; 1(2):201-8. PubMed ID: 9140064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.