These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 7476184)

  • 1. Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus megaterium.
    Hueck CJ; Kraus A; Schmiedel D; Hillen W
    Mol Microbiol; 1995 Jun; 16(5):855-64. PubMed ID: 7476184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catabolite repression of the xyl operon in Bacillus megaterium.
    Rygus T; Hillen W
    J Bacteriol; 1992 May; 174(9):3049-55. PubMed ID: 1569031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequences of ccpA and two downstream Bacillus megaterium genes with homology to the motAB operon from Bacillus subtilis.
    Hueck C; Kraus A; Hillen W
    Gene; 1994 May; 143(1):147-8. PubMed ID: 8200532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of XylR CcpA and cre to diauxic growth of Bacillus megaterium and to xylose isomerase expression in the presence of glucose and xylose.
    Schmiedel D; Hillen W
    Mol Gen Genet; 1996 Feb; 250(3):259-66. PubMed ID: 8602140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus.
    Egeter O; Brückner R
    Mol Microbiol; 1996 Aug; 21(4):739-49. PubMed ID: 8878037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression.
    Darbon E; Servant P; Poncet S; Deutscher J
    Mol Microbiol; 2002 Feb; 43(4):1039-52. PubMed ID: 11929549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals.
    Gösseringer R; Küster E; Galinier A; Deutscher J; Hillen W
    J Mol Biol; 1997 Mar; 266(4):665-76. PubMed ID: 9102460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and characterization of the catabolite control protein A gene from Bacillus stearothermophilus No. 236.
    Choi ID; Ha GS; Kim KN; Choi YJ
    Biosci Biotechnol Biochem; 2004 Jul; 68(7):1414-23. PubMed ID: 15277745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA.
    Monedero V; Gosalbes MJ; Pérez-Martínez G
    J Bacteriol; 1997 Nov; 179(21):6657-64. PubMed ID: 9352913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria.
    Deutscher J; Küster E; Bergstedt U; Charrier V; Hillen W
    Mol Microbiol; 1995 Mar; 15(6):1049-53. PubMed ID: 7623661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in catabolite control protein CcpA separating growth effects from catabolite repression.
    Küster E; Hilbich T; Dahl MK; Hillen W
    J Bacteriol; 1999 Jul; 181(13):4125-8. PubMed ID: 10383986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.
    Miwa Y; Nagura K; Eguchi S; Fukuda H; Deutscher J; Fujita Y
    Mol Microbiol; 1997 Mar; 23(6):1203-13. PubMed ID: 9106211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis.
    Chauvaux S; Paulsen IT; Saier MH
    J Bacteriol; 1998 Feb; 180(3):491-7. PubMed ID: 9457849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a co-repressor binding site in catabolite control protein CcpA.
    Kraus A; Küster E; Wagner A; Hoffmann K; Hillen W
    Mol Microbiol; 1998 Dec; 30(5):955-63. PubMed ID: 9988473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA.
    Luesink EJ; van Herpen RE; Grossiord BP; Kuipers OP; de Vos WM
    Mol Microbiol; 1998 Nov; 30(4):789-98. PubMed ID: 10094627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene.
    Monedero V; Boël G; Deutscher J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):433-8. PubMed ID: 11361075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations in catabolite control protein CcpA showing glucose-independent regulation in Bacillus megaterium.
    Küster-Schöck E; Wagner A; Völker U; Hillen W
    J Bacteriol; 1999 Dec; 181(24):7634-8. PubMed ID: 10601226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of CcpA mutations defective in carbon catabolite repression in Bacillus megaterium.
    Kraus A; Hillen W
    FEMS Microbiol Lett; 1997 Aug; 153(1):221-6. PubMed ID: 9252590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that Bacillus catabolite control protein CcpA interacts with RNA polymerase to inhibit transcription.
    Kim JH; Yang YK; Chambliss GH
    Mol Microbiol; 2005 Apr; 56(1):155-62. PubMed ID: 15773986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of expression, genetic organization and substrate specificity of xylose uptake in Bacillus megaterium.
    Schmiedel D; Kintrup M; Küster E; Hillen W
    Mol Microbiol; 1997 Mar; 23(5):1053-62. PubMed ID: 9076741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.