BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 747651)

  • 21. Regulation of hepatic fatty acid metabolism. The activities of mitochondrial and microsomal acyl-CoA:sn-glycerol 3-phosphate O-acyltransferase and the concentrations of malonyl-CoA, non-esterified and esterified carnitine, glycerol 3-phosphate, ketone bodies and long-chain acyl-CoA esters in livers of fed or starved pregnant, lactating and weaned rats.
    Zammit VA
    Biochem J; 1981 Jul; 198(1):75-83. PubMed ID: 7326003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hormonal regulation of ketogenesis in hepatocytes from fed rats before and after glycogen depletion.
    Schofield PS; Kirk CJ; Sugden MC
    Biochem Int; 1984 Nov; 9(5):611-20. PubMed ID: 6098276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relative utilization of fatty acids for synthesis of ketone bodies and complex lipids in the liver of developing rats.
    Yeh YY; Streuli VL; Zee P
    Lipids; 1977 Apr; 12(4):367-74. PubMed ID: 857111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analyses of control exerted by overt carnitine palmitoyltransferase over hepatic fatty acid oxidation and ketogenesis in suckling rats.
    Krauss S; Zammit VA; Quant PA
    Biochem Soc Trans; 1996 Feb; 24(1):39S. PubMed ID: 8674708
    [No Abstract]   [Full Text] [Related]  

  • 25. The time course of changes in carbohydrate and lipid metabolism in the rat as caused by starvation and refeeding.
    Nutr Rev; 1973 Jul; 31(7):222-3. PubMed ID: 4598158
    [No Abstract]   [Full Text] [Related]  

  • 26. [Energy metabolism of newborn rats during the first hours of extrauterine life].
    Medina JM
    Rev Esp Fisiol; 1982; 38 Suppl():221-7. PubMed ID: 7146579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fatty acid uptake and metabolism to ketone bodies and triacyglycerol in rat and human hepatocyte cultures is dependent on chain-length and degree of saturation. Effects of carnitine and glucagon.
    Emmison N; Agius L
    FEBS Lett; 1988 Aug; 236(1):83-8. PubMed ID: 3402619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rates of ketone-body formation in the perfused rat liver.
    Krebs HA; Wallace PG; Hems R; Freedland RA
    Biochem J; 1969 May; 112(5):595-600. PubMed ID: 5822063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of carnitine on ketogenesis in perfused livers from juvenile visceral steatosis mice with systemic carnitine deficiency.
    Nakajima T; Horiuchi M; Yamanaka H; Kizaki Z; Inoue F; Kodo N; Kinugasa A; Saheki T; Sawada T
    Pediatr Res; 1997 Jul; 42(1):108-13. PubMed ID: 9212045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of ketogenesis during the suckling-weanling transition in the rat. Studies with isolated hepatocytes.
    Benito M; Whitelaw E; Williamson DH
    Biochem J; 1979 Apr; 180(1):137-44. PubMed ID: 226064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship between ketogenesis and gluconeogenesis in isolated hepatocytes from newborn rats.
    Ferré P; Satabin P; El Manoubi L; Callikan S; Girard J
    Biochem J; 1981 Nov; 200(2):429-33. PubMed ID: 7340842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. beta-Hydroxybutyrate oxidation is reduced and hepatic balance of ketone bodies and free fatty acids is unaltered in carnitine-depleted, pivalate-treated rats.
    Bianchi PB; Davis AT
    J Nutr; 1996 Nov; 126(11):2867-72. PubMed ID: 8914959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The regulation of ketogenesis.
    Foster DW; McGarry JD
    Ciba Found Symp; 1982; 87():120-31. PubMed ID: 6122545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activities of enzymes of ketone-body utilization in brain and other tissues of suckling rats.
    Page MA; Krebs HA; Williamson DH
    Biochem J; 1971 Jan; 121(1):49-53. PubMed ID: 5116556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in the concentrations of hepatic metabolites on administration of dihydroxyacetone or glycerol to starved rats and their relationship to the control of ketogenesis.
    Williamson DH; Veloso D; Ellington EV; Krebs HA
    Biochem J; 1969 Sep; 114(3):575-84. PubMed ID: 4309529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of food deprivation on ketonaemia, ketogenesis and hepatic intermediary metabolism in the non-lactating dairy cow.
    Baird GD; Heitzman RJ; Reid IM; Symonds HW; Lomax MA
    Biochem J; 1979 Jan; 178(1):35-44. PubMed ID: 219850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A single therapeutic dose of valproate affects liver carbohydrate, fat, adenylate, amino acid, coenzyme A, and carnitine metabolism in infant mice: possible clinical significance.
    Thurston JH; Carroll JE; Hauhart RE; Schiro JA
    Life Sci; 1985 Apr; 36(17):1643-51. PubMed ID: 3921791
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of starvation and refeeding on carbohydrate and lipid metabolism in vivo and in the perfused rat liver. The relationship between fatty acid oxidation and esterification in the regulation of ketogenesis.
    McGarry JD; Meier JM; Foster DW
    J Biol Chem; 1973 Jan; 248(1):270-8. PubMed ID: 4692833
    [No Abstract]   [Full Text] [Related]  

  • 39. The effect of fasting/refeeding and insulin treatment on the expression of the regulatory genes of ketogenesis in intestine and liver of suckling rats.
    Arias G; Asins G; Hegardt FG; Serra D
    Arch Biochem Biophys; 1997 Apr; 340(2):287-98. PubMed ID: 9143333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic adaptations to change of nutrition at birth.
    Girard J
    Biol Neonate; 1990; 58 Suppl 1():3-15. PubMed ID: 2265217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.