These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7476547)

  • 1. Strategies for the isolation of ciliary motility and assembly mutants in Tetrahymena.
    Pennock DG; Gorovsky MA
    Methods Cell Biol; 1995; 47():571-8. PubMed ID: 7476547
    [No Abstract]   [Full Text] [Related]  

  • 2. Targeted gene knockout of inner arm 1 in Tetrahymena thermophila.
    Angus SP; Edelmann RE; Pennock DG
    Eur J Cell Biol; 2001 Jul; 80(7):486-97. PubMed ID: 11499791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The actin gene ACT1 is required for phagocytosis, motility, and cell separation of Tetrahymena thermophila.
    Williams NE; Tsao CC; Bowen J; Hehman GL; Williams RJ; Frankel J
    Eukaryot Cell; 2006 Mar; 5(3):555-67. PubMed ID: 16524910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total internal reflection fluorescence microscopy of intraflagellar transport in Tetrahymena thermophila.
    Jiang YY; Lechtreck K; Gaertig J
    Methods Cell Biol; 2015; 127():445-56. PubMed ID: 25837403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of properties of cilia using Tetrahymena thermophila.
    Rajagopalan V; Corpuz EO; Hubenschmidt MJ; Townsend CR; Asai DJ; Wilkes DE
    Methods Mol Biol; 2009; 586():283-99. PubMed ID: 19768437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted gene disruption of dynein heavy chain 7 of Tetrahymena thermophila results in altered ciliary waveform and reduced swim speed.
    Wood CR; Hard R; Hennessey TM
    J Cell Sci; 2007 Sep; 120(Pt 17):3075-85. PubMed ID: 17684060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of initiation and elongation of cilia during ciliary regeneration in Tetrahymena.
    Hadley GA; Williams NE
    Mol Cell Biol; 1981 Sep; 1(9):865-70. PubMed ID: 9279399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A temperature-sensitive mutation affecting synthesis of outer arm dyneins in Tetrahymena thermophila.
    Attwell GJ; Bricker CS; Schwandt A; Gorovsky MA; Pennock DG
    J Protozool; 1992; 39(2):261-6. PubMed ID: 1533674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciliation induces phosphorylation of a 90-kDa cortical protein in Tetrahymena thermophila.
    Gitz DL; Pennock DG
    J Eukaryot Microbiol; 1995; 42(6):742-8. PubMed ID: 8520589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dcc mutation affects ciliary length in Tetrahymena thermophila.
    Gitz DL; Eells JB; Pennock DG
    J Eukaryot Microbiol; 1993; 40(5):668-76. PubMed ID: 8401479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-mediated transformation in Tetrahymena.
    Gaertig J; Gorovsky MA
    Methods Cell Biol; 1995; 47():559-69. PubMed ID: 7476545
    [No Abstract]   [Full Text] [Related]  

  • 12. Dynein-2 affects the regulation of ciliary length but is not required for ciliogenesis in Tetrahymena thermophila.
    Rajagopalan V; Subramanian A; Wilkes DE; Pennock DG; Asai DJ
    Mol Biol Cell; 2009 Jan; 20(2):708-20. PubMed ID: 19019986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia regulates assembly of cilia in suppressors of Tetrahymena lacking an intraflagellar transport subunit gene.
    Brown JM; Fine NA; Pandiyan G; Thazhath R; Gaertig J
    Mol Biol Cell; 2003 Aug; 14(8):3192-207. PubMed ID: 12925756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ciliary polypeptides and glycoconjugates of wild-type and mutant Tetrahymena thermophila: starved versus nonstarved.
    Cheng LJ; Hufnagel LA
    Dev Genet; 1992; 13(1):26-33. PubMed ID: 1395138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shulin packages axonemal outer dynein arms for ciliary targeting.
    Mali GR; Ali FA; Lau CK; Begum F; Boulanger J; Howe JD; Chen ZA; Rappsilber J; Skehel M; Carter AP
    Science; 2021 Feb; 371(6532):910-916. PubMed ID: 33632841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of genes encoding predicted inner arm dynein heavy chains causes motility phenotypes in Tetrahymena.
    Liu S; Hard R; Rankin S; Hennessey T; Pennock DG
    Cell Motil Cytoskeleton; 2004 Nov; 59(3):201-14. PubMed ID: 15468164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MYO1, a novel, unconventional myosin gene affects endocytosis and macronuclear elongation in Tetrahymena thermophila.
    Williams SA; Hosein RE; Garcés JA; Gavin RH
    J Eukaryot Microbiol; 2000; 47(6):561-8. PubMed ID: 11128708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of a mutation system in Tetrahymena outer arm dynein and P-loop functions of the alpha heavy chain (Dyh3p).
    Edamatsu M
    Biochem Biophys Res Commun; 2017 Jan; 483(1):24-31. PubMed ID: 28069381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Members of the NIMA-related kinase family promote disassembly of cilia by multiple mechanisms.
    Wloga D; Camba A; Rogowski K; Manning G; Jerka-Dziadosz M; Gaertig J
    Mol Biol Cell; 2006 Jun; 17(6):2799-810. PubMed ID: 16611747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p28 dynein light chains and ciliary motility in Tetrahymena thermophila.
    Subramanian A; Kabi A; Gray SF; Pennock D
    Cytoskeleton (Hoboken); 2016 Apr; 73(4):197-208. PubMed ID: 26994403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.