These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7476708)

  • 1. The effect of fat on the coherent-to-Compton scattering ratio in the calcaneus: a computational analysis.
    Guttmann GD; Goodsitt MM
    Med Phys; 1995 Aug; 22(8):1229-34. PubMed ID: 7476708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to improve x-ray scattering techniques to quantify bone mineral density using spectroscopy.
    Krmar M; Ganezer K
    Med Phys; 2012 Apr; 39(4):1831-45. PubMed ID: 22482605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The measurement of trabecular bone mineral density using coherent and Compton scattered photons in vitro.
    Ling SS; Rustgi S; Karellas A; Craven JD; Whiting JS; Greenfield MA; Stern R
    Med Phys; 1982; 9(2):208-15. PubMed ID: 7087905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent scattering and bone mineral measurement: the dependence of sensitivity on angle and energy.
    Ndlovu AM; Farrell TJ; Webber CE
    Med Phys; 1991; 18(5):985-9. PubMed ID: 1961164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A large-angle coherent/Compton scattering method for measurement in vitro of trabecular bone mineral concentration.
    Gigante GE; Sciuti S
    Med Phys; 1985; 12(3):321-6. PubMed ID: 4010637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of the homogeneity of the trabecular bone mineral density in the calcaneus.
    Shukla SS; Leu MY; Tighe T; Krutoff B; Craven JD; Greenfield MA
    Med Phys; 1987; 14(4):687-90. PubMed ID: 3627012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trabecular bone mineral density measurement in vivo: use of the ratio of coherent to Compton-scattered photons in the calcaneus.
    Shukla SS; Leichter I; Karellas A; Craven JD; Greenfield MA
    Radiology; 1986 Mar; 158(3):695-7. PubMed ID: 3945741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of tissue via coherent-to-Compton scattering ratio: sensitivity considerations.
    Karellas A; Leichter I; Craven JD; Greenfield MA
    Med Phys; 1983; 10(5):605-9. PubMed ID: 6646064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative assessment of bone mineral by photon scattering: accuracy and precision considerations.
    Shukla SS; Karellas A; Leichter I; Craven JD; Greenfield MA
    Med Phys; 1985; 12(4):447-8. PubMed ID: 4033590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of bone density by coherent-Compton scattering.
    Stalp JT; Mazess RB
    Med Phys; 1980; 7(6):723-6. PubMed ID: 7464719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy, precision, and homogeneity effects in the determination of the bone mineral content with dual photon absorptiometry in the heel bone.
    Szücs J; Jonson R; Granhed H; Hansson T
    Bone; 1992; 13(2):179-83. PubMed ID: 1576015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of the momentum transfer on the sensitivity of a photon scattering method for the characterization of tissues.
    Leichter I; Karellas A; Craven JD; Greenfield MA
    Med Phys; 1984; 11(1):31-6. PubMed ID: 6700551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative assessment of bone mineral by photon scattering: calibration considerations.
    Leichter I; Karellas A; Shukla SS; Looper JL; Craven JD; Greenfield MA
    Med Phys; 1985; 12(4):466-8. PubMed ID: 4033593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the mineral density of trabecular bone using Compton scattering.
    Tondon A; Singh M; Singh B; Sandhu BS
    Appl Radiat Isot; 2023 Jan; 191():110530. PubMed ID: 36401991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision and accuracy of dual-energy X-ray absorptiometry for determining in vivo body composition of mice.
    Nagy TR; Clair AL
    Obes Res; 2000 Aug; 8(5):392-8. PubMed ID: 10968731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical and experimental limits of triple photon energy absorptiometry in the measurement of bone mineral.
    Kotzki PO; Mariano-Goulart D; Rossi M
    Phys Med Biol; 1991 Apr; 36(4):429-37. PubMed ID: 2047394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytic and quantitative exposition of patient-specific systematic inaccuracies inherent in planar DXA-derived in vivo BMD measurements.
    Bolotin HH
    Med Phys; 1998 Feb; 25(2):139-51. PubMed ID: 9507473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-energy X-ray absorptiometry for histologic bone sections.
    Denissen H; De Blieck J; Verhey H; Klein C; Van Lingen A
    J Bone Miner Res; 1996 May; 11(5):638-44. PubMed ID: 9157778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A coherent/Compton scattering method for measurement of trabecular bone mineral density in the distal radius.
    Olkkonen H; Puumalainen P; Karjalainen P; Alhava EM
    Invest Radiol; 1981; 16(6):491-5. PubMed ID: 7319755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of scattering cross sections for increased accuracy in diagnostic radiology. I. Energy broadening of Compton-scattered photons.
    Carlsson GA; Carlsson CA; Berggren KF; Ribberfors R
    Med Phys; 1982; 9(6):868-79. PubMed ID: 7162473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.