These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7476801)

  • 1. Clinical comparison of three methods to determine resting energy expenditure.
    Osborne BJ; Saba AK; Wood SJ; Nyswonger GD; Hansen CW
    Nutr Clin Pract; 1994 Dec; 9(6):241-6. PubMed ID: 7476801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of measured versus predicted energy requirements in critically ill cancer patients.
    Pirat A; Tucker AM; Taylor KA; Jinnah R; Finch CG; Canada TD; Nates JL
    Respir Care; 2009 Apr; 54(4):487-94. PubMed ID: 19327184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate determination of energy needs in hospitalized patients.
    Boullata J; Williams J; Cottrell F; Hudson L; Compher C
    J Am Diet Assoc; 2007 Mar; 107(3):393-401. PubMed ID: 17324656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of a predictive method for an accurate assessment of resting energy expenditure in medical mechanically ventilated patients.
    Savard JF; Faisy C; Lerolle N; Guerot E; Diehl JL; Fagon JY
    Crit Care Med; 2008 Apr; 36(4):1175-83. PubMed ID: 18379244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison between ventilation modes: how does activity level affect energy expenditure estimates?
    Hoher JA; Zimermann Teixeira PJ; Hertz F; da S Moreira J
    JPEN J Parenter Enteral Nutr; 2008; 32(2):176-83. PubMed ID: 18407911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicted versus measured resting energy expenditure in patients requiring home parenteral nutrition.
    Ławiński M; Singer P; Gradowski Ł; Gradowska A; Bzikowska A; Majewska K
    Nutrition; 2015; 31(11-12):1328-32. PubMed ID: 26278135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of three methods of determining oxygen consumption and resting energy expenditure.
    Walsh BJ; Morley TF
    J Am Osteopath Assoc; 1989 Jan; 89(1):43-6. PubMed ID: 2921120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Energy expenditure at rest: indirect calorimetry vs the Fick principle].
    Raurich Puigdevall JM; Ibáñez Juvé J
    Nutr Hosp; 1998; 13(6):303-8. PubMed ID: 9889555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of resting energy expenditure prediction methods with measured resting energy expenditure in obese, hospitalized adults.
    Anderegg BA; Worrall C; Barbour E; Simpson KN; Delegge M
    JPEN J Parenter Enteral Nutr; 2009; 33(2):168-75. PubMed ID: 19251910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standard equations are not accurate in assessing resting energy expenditure in patients with amyotrophic lateral sclerosis.
    Sherman MS; Pillai A; Jackson A; Heiman-Patterson T
    JPEN J Parenter Enteral Nutr; 2004; 28(6):442-6. PubMed ID: 15568293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutritional gain versus financial gain: The role of metabolic carts in the surgical ICU.
    Davis KA; Kinn T; Esposito TJ; Reed RL; Santaniello JM; Luchette FA
    J Trauma; 2006 Dec; 61(6):1436-40. PubMed ID: 17159687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Nutritional assessment in patients with cirrhosis: the use of indirect calorimetry].
    Gottschall CB; Alvares-da-Silva MR; Camargo AC; Burtett RM; da Silveira TR
    Arq Gastroenterol; 2004; 41(4):220-4. PubMed ID: 15806264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Analysis of energy expenditure in adults with cystic fibrosis: comparison of indirect calorimetry and prediction equations].
    Fuster CO; Fuster GO; Galindo AD; Galo AP; Verdugo JM; Lozano FM
    Arch Bronconeumol; 2007 Jul; 43(7):366-72. PubMed ID: 17663888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harris-Benedict Equation and Resting Energy Expenditure Estimates in Critically Ill Ventilator Patients.
    Picolo MF; Lago AF; Menegueti MG; Nicolini EA; Basile-Filho A; Nunes AA; Martins-Filho OA; Auxiliadora-Martins M
    Am J Crit Care; 2016 Jan; 25(1):e21-9. PubMed ID: 26724304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retrospective evaluation of commonly used equations to predict energy expenditure in mechanically ventilated, critically ill patients.
    Alexander E; Susla GM; Burstein AH; Brown DT; Ognibene FP
    Pharmacotherapy; 2004 Dec; 24(12):1659-67. PubMed ID: 15585435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The agreement between measured and predicted resting energy expenditure in patients with pancreatic cancer: a pilot study.
    Bauer J; Reeves MM; Capra S
    JOP; 2004 Jan; 5(1):32-40. PubMed ID: 14730120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Energy requirement in patients after liver transplantation].
    Masclans JR; Planas M; Porta I; Bermejo B; Padró J; de Latorre FJ
    Nutr Hosp; 1993; 8(5):288-94. PubMed ID: 8334180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The thermodilution technique for measuring resting energy expenditure does not agree with indirect calorimetry for the critically ill patient.
    Ogawa AM; Shikora SA; Burke LM; Heetderks-Cox JE; Bergren CT; Muskat PC
    JPEN J Parenter Enteral Nutr; 1998; 22(6):347-51. PubMed ID: 9829606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicted versus measured energy expenditure by continuous, online indirect calorimetry in ventilated, critically ill children during the early postinjury period.
    Vazquez Martinez JL; Martinez-Romillo PD; Diez Sebastian J; Ruza Tarrio F
    Pediatr Crit Care Med; 2004 Jan; 5(1):19-27. PubMed ID: 14697104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resting energy expenditure of patients with gynecologic malignancies.
    Dickerson RN; White KG; Curcillo PG; King SA; Mullen JL
    J Am Coll Nutr; 1995 Oct; 14(5):448-54. PubMed ID: 8522723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.