These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 7476878)
21. Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the poaceae. Magalhaes JV; Garvin DF; Wang Y; Sorrells ME; Klein PE; Schaffert RE; Li L; Kochian LV Genetics; 2004 Aug; 167(4):1905-14. PubMed ID: 15342528 [TBL] [Abstract][Full Text] [Related]
22. Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. La Rota M; Sorrells ME Funct Integr Genomics; 2004 Mar; 4(1):34-46. PubMed ID: 14740255 [TBL] [Abstract][Full Text] [Related]
23. Comparison of genetic and physical maps of group 7 chromosomes from Triticum aestivum L. Hohmann U; Endo TR; Gill KS; Gill BS Mol Gen Genet; 1994 Dec; 245(5):644-53. PubMed ID: 7808416 [TBL] [Abstract][Full Text] [Related]
24. An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Jones ES; Mahoney NL; Hayward MD; Armstead IP; Jones JG; Humphreys MO; King IP; Kishida T; Yamada T; Balfourier F; Charmet G; Forster JW Genome; 2002 Apr; 45(2):282-95. PubMed ID: 11962626 [TBL] [Abstract][Full Text] [Related]
25. Resistance gene analogs in barley and their relationship to rust resistance genes. Collins N; Park R; Spielmeyer W; Ellis J; Pryor AJ Genome; 2001 Jun; 44(3):375-81. PubMed ID: 11444696 [TBL] [Abstract][Full Text] [Related]
26. Cloning and mapping of a putative barley NADPH-dependent HC-toxin reductase. Han F; Kleinhofs A; Kilian A; Ullrich SE Mol Plant Microbe Interact; 1997 Mar; 10(2):234-9. PubMed ID: 9057330 [TBL] [Abstract][Full Text] [Related]
27. Structural and functional organization of the '1S0.8 gene-rich region' in the Triticeae. Sandhu D; Gill KS Plant Mol Biol; 2002; 48(5-6):791-804. PubMed ID: 11999850 [TBL] [Abstract][Full Text] [Related]
28. TriMEDB: a database to integrate transcribed markers and facilitate genetic studies of the tribe Triticeae. Mochida K; Saisho D; Yoshida T; Sakurai T; Shinozaki K BMC Plant Biol; 2008 Jun; 8():72. PubMed ID: 18590523 [TBL] [Abstract][Full Text] [Related]
29. Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Gill KS; Gill BS; Endo TR; Taylor T Genetics; 1996 Dec; 144(4):1883-91. PubMed ID: 8978071 [TBL] [Abstract][Full Text] [Related]
30. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Danilova TV; Friebe B; Gill BS Theor Appl Genet; 2014 Mar; 127(3):715-30. PubMed ID: 24408375 [TBL] [Abstract][Full Text] [Related]
31. An efficient Oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Li G; Zhang T; Yu Z; Wang H; Yang E; Yang Z Plant J; 2021 Feb; 105(4):978-993. PubMed ID: 33210785 [TBL] [Abstract][Full Text] [Related]
32. Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Wicker T; Mayer KF; Gundlach H; Martis M; Steuernagel B; Scholz U; Simková H; Kubaláková M; Choulet F; Taudien S; Platzer M; Feuillet C; Fahima T; Budak H; Dolezel J; Keller B; Stein N Plant Cell; 2011 May; 23(5):1706-18. PubMed ID: 21622801 [TBL] [Abstract][Full Text] [Related]
33. Genome-wide identification of novel genetic markers from RNA sequencing assembly of diverse Aegilops tauschii accessions. Nishijima R; Yoshida K; Motoi Y; Sato K; Takumi S Mol Genet Genomics; 2016 Aug; 291(4):1681-94. PubMed ID: 27142109 [TBL] [Abstract][Full Text] [Related]
34. A new single-locus cytogenetic mapping system for maize (Zea mays L.): overcoming FISH detection limits with marker-selected sorghum (S. propinquum L.) BAC clones. Koumbaris GL; Bass HW Plant J; 2003 Sep; 35(5):647-59. PubMed ID: 12940957 [TBL] [Abstract][Full Text] [Related]
35. Development of a deletion and genetic linkage map for the 5A and 5B chromosomes of wheat (Triticum aestivum). Gadaleta A; Giancaspro A; Giove SL; Zacheo S; Incerti O; Simeone R; Colasuonno P; Nigro D; Valè G; Cattivelli L; Stanca M; Blanco A Genome; 2012 Jun; 55(6):417-27. PubMed ID: 22624876 [TBL] [Abstract][Full Text] [Related]
36. Comparative mapping of homoeologous group 1 regions and genes for resistance to obligate biotrophs in Avena, Hordeum, and Zea mays. Yu GX; Bush AL; Wise RP Genome; 1996 Feb; 39(1):155-64. PubMed ID: 18469884 [TBL] [Abstract][Full Text] [Related]
37. Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Dubcovsky J; Luo MC; Zhong GY; Bransteitter R; Desai A; Kilian A; Kleinhofs A; Dvorák J Genetics; 1996 Jun; 143(2):983-99. PubMed ID: 8725244 [TBL] [Abstract][Full Text] [Related]
38. Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Gaut BS Genome Res; 2001 Jan; 11(1):55-66. PubMed ID: 11156615 [TBL] [Abstract][Full Text] [Related]
39. Gramene, a tool for grass genomics. Ware DH; Jaiswal P; Ni J; Yap IV; Pan X; Clark KY; Teytelman L; Schmidt SC; Zhao W; Chang K; Cartinhour S; Stein LD; McCouch SR Plant Physiol; 2002 Dec; 130(4):1606-13. PubMed ID: 12481044 [TBL] [Abstract][Full Text] [Related]
40. A linkage map of hexaploid oat based on grass anchor DNA clones and its relationship to other oat maps. Portyanko VA; Hoffman DL; Lee M; Holland JB Genome; 2001 Apr; 44(2):249-65. PubMed ID: 11341736 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]