These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 747753)
21. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery. Ramiar A; Larimi MM; Ranjbar AA Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216 [TBL] [Abstract][Full Text] [Related]
22. Frequency dependence of blood viscosity in oscillatory flow. Coulter NA; Singh M Biorheology; 1971 Dec; 8(3):115-24. PubMed ID: 5146946 [No Abstract] [Full Text] [Related]
23. Red cell motions and wall interactions in tube flow. Goldsmith HL Fed Proc; 1971; 30(5):1578-90. PubMed ID: 5119364 [No Abstract] [Full Text] [Related]
24. An interpretation of low strain rate blood viscosity measurements: a continuum approach. Deutsch S; Phillips WM Biorheology; 1976 Nov; 13(5):297-307. PubMed ID: 1000080 [No Abstract] [Full Text] [Related]
25. Theory of non-Newtonian viscosity of blood at low shear rate--effect of rouleaux. Murata T Biorheology; 1976 Nov; 13(5):287-96. PubMed ID: 1000079 [No Abstract] [Full Text] [Related]
27. A preliminary study of rheology of granulocytes. Adell R; Skalak R; Branemark PI Blut; 1970 Aug; 21(2):91-105. PubMed ID: 5505159 [No Abstract] [Full Text] [Related]
28. Yield stress of normal human blood as a function of endogenous fibrinogen. Merrill EW; Cheng CS; Pelletier GA J Appl Physiol; 1969 Jan; 26(1):1-3. PubMed ID: 5762871 [No Abstract] [Full Text] [Related]
29. Simulation studies of blood flow through stenoses in the microcirculation. Tickner EG; Sacks AH Microvasc Res; 1971 Jul; 3(3):337-42. PubMed ID: 5111907 [No Abstract] [Full Text] [Related]
30. The effect of microstructure on the rheological properties of blood. Kang CK; Eringen AC Bull Math Biol; 1976; 38(2):135-59. PubMed ID: 1268373 [No Abstract] [Full Text] [Related]
31. Flow through a converging-diverging tube and its implications in occlusive vascular disease. I. Theoretical development. Forrester JH; Young DF J Biomech; 1970 May; 3(3):297-305. PubMed ID: 5521547 [No Abstract] [Full Text] [Related]
32. [Blood flow in the capillaries]. Barras JP Helv Med Acta; 1969 Mar; 34(6):468-77. PubMed ID: 5779214 [No Abstract] [Full Text] [Related]
39. [Branches of the vascular bed: a first approach using influence area]. Lefort M; Stoltz JF; Larcan A Biorheology; 1974 Jan; 11(1):79-86. PubMed ID: 4824530 [No Abstract] [Full Text] [Related]
40. A hydrodynamic interpretation of crisis in sickle cell anemia. Cima LG; Discher DE; Tong J; Williams MC Microvasc Res; 1994 Jan; 47(1):41-54. PubMed ID: 8022313 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]