These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. Mathematical concepts of blood flow and blood rheology. Trowbridge EA Life Support Syst; 1984; 2(1):25-38. PubMed ID: 6471908 [No Abstract] [Full Text] [Related]
64. [Rheology of the blood]. Chmiel H; Störmer B Biomed Tech (Berl); 1972 Oct; 17(5):174-80. PubMed ID: 4678642 [No Abstract] [Full Text] [Related]
65. INFLUENCE OF FIBRINOGEN ON FLOW PROPERTIES OF ERYTHROCYTE SUSPENSIONS. WELLS RE; GAWRONSKI TH; COX PJ; PERERA RD Am J Physiol; 1964 Nov; 207():1035-40. PubMed ID: 14237445 [No Abstract] [Full Text] [Related]
66. Lateral migration of blood cells and microspheres in two-dimensional Poiseuille flow: a laser-Doppler study. Uijttewaal WS; Nijhof EJ; Heethaar RM J Biomech; 1994 Jan; 27(1):35-42. PubMed ID: 8106534 [TBL] [Abstract][Full Text] [Related]
67. Numerical evaluation of blood viscosity affecting pulse wave propagation in a fluid-structure interaction model. He F; Hua L; Gao LJ Biomed Tech (Berl); 2015 Feb; 60(1):11-5. PubMed ID: 25720033 [TBL] [Abstract][Full Text] [Related]
68. Engineering simulation of the viscous behavior of whole blood using suspensions of flexible particles. Tickner EG; Sacks AH Circ Res; 1969 Oct; 25(4):389-400. PubMed ID: 5347220 [No Abstract] [Full Text] [Related]
69. Wave propagation through a Newtonian fluid contained within a thick-walled, viscoelastic tube: the influence of wall compressibility. Cox RH J Biomech; 1970 May; 3(3):317-35. PubMed ID: 5521549 [No Abstract] [Full Text] [Related]
70. Reply to the comments on - a two-fluid model for blood flow through small diameter tubes. Chaturani P; Biswas D; Mahajan SP Biorheology; 1983; 20(6):807-9. PubMed ID: 6661531 [No Abstract] [Full Text] [Related]
71. Blood flow in the lung. Collins R; Maccario JA J Biomech; 1979; 12(5):373-95. PubMed ID: 447757 [No Abstract] [Full Text] [Related]
72. [Non-newtonian behavior of blood and parietal shear stress in a Poiseuille flow]. Wang X; Stoltz JF J Mal Vasc; 1995; 20(2):117-21. PubMed ID: 7650437 [TBL] [Abstract][Full Text] [Related]
73. Optimal hematocrit theory during activity in the bullfrog (Rana catesbeiana). Withers PC; Hillman SS; Hedrick MS; Kimmel PB Comp Biochem Physiol A Comp Physiol; 1991; 99(1-2):55-60. PubMed ID: 1675957 [TBL] [Abstract][Full Text] [Related]
74. SOME RHEOLOGICAL FACTORS IN THE PATHOGENESIS OF THROMBOSIS. DINTENFASS L Lancet; 1965 Aug; 2(7408):370-2. PubMed ID: 14328799 [No Abstract] [Full Text] [Related]
75. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions. Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010 [TBL] [Abstract][Full Text] [Related]
76. Rheological behaviour of human blood and plasma at steady flow and oscillatory flow. Lutz TW; Barras JP Vasa; 1983; 12(2):121-5. PubMed ID: 6880374 [No Abstract] [Full Text] [Related]
77. Maternal blood viscosity and uteroplacental blood flow velocity waveforms in normal and complicated pregnancies. Steel SA; Pearce JM; Nash G; Christopher B; Dormandy J; Bland JM Br J Obstet Gynaecol; 1988 Aug; 95(8):747-52. PubMed ID: 3048372 [TBL] [Abstract][Full Text] [Related]
78. The capillary flow of suspensions of human red blood cells in plasma substitutes. Barras JP Bibl Anat; 1969; 10():38-44. PubMed ID: 5407392 [No Abstract] [Full Text] [Related]
79. Angiographic methods for the study of fluid mechanical factors in atherogenesis. Smedby O Acta Radiol Suppl; 1992; 380():1-38. PubMed ID: 1414424 [TBL] [Abstract][Full Text] [Related]