BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 7477940)

  • 1. Rationale for intrastriatal grafting of striatal neuroblasts in patients with Huntington's disease.
    Peschanski M; Cesaro P; Hantraye P
    Neuroscience; 1995 Sep; 68(2):273-85. PubMed ID: 7477940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of dopamine receptors and associated mRNA in transplants of human fetal striatal tissue in rodents with experimental Huntington's disease.
    Pundt LL; Narang N; Kondoh T; Low WC
    Neurosci Res; 1997 Apr; 27(4):305-15. PubMed ID: 9152043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transplantation of human striatal tissue into a rodent model of Huntington's disease: phenotypic expression of transplanted neurons and host-to-graft innervation.
    Pundt LL; Kondoh T; Conrad JA; Low WC
    Brain Res Bull; 1996; 39(1):23-32. PubMed ID: 8846104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quinolinic acid-induced increases in calbindin D28k immunoreactivity in rat striatal neurons in vivo and in vitro mimic the pattern seen in Huntington's disease.
    Huang Q; Zhou D; Sapp E; Aizawa H; Ge P; Bird ED; Vonsattel JP; DiFiglia M
    Neuroscience; 1995 Mar; 65(2):397-407. PubMed ID: 7777157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell therapy in Huntington's disease.
    Dunnett SB; Rosser AE
    NeuroRx; 2004 Oct; 1(4):394-405. PubMed ID: 15717043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ontogeny of human striatal DARPP-32 neurons in fetuses and following xenografting to the adult rat brain.
    Naimi S; Jeny R; Hantraye P; Peschanski M; Riche D
    Exp Neurol; 1996 Jan; 137(1):15-25. PubMed ID: 8566206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis.
    Schackel S; Pauly MC; Piroth T; Nikkhah G; Döbrössy MD
    Behav Brain Res; 2013 Nov; 256():56-63. PubMed ID: 23916743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural transplantation for Huntington's disease: experimental rationale and recommendations for clinical trials.
    Shannon KM; Kordower JH
    Cell Transplant; 1996; 5(2):339-52. PubMed ID: 8689044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fetal striatal transplants restore electrophysiological sensitivity to dopamine in the lesioned striatum of rats with experimental Huntington's disease.
    Chen GJ; Jeng CH; Lin SZ; Tsai SH; Wang Y; Chiang YH
    J Biomed Sci; 2002; 9(4):303-10. PubMed ID: 12145527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the human striatum: implications for fetal striatal transplantation in the treatment of Huntington's disease.
    Freeman TB; Sanberg PR; Isacson O
    Cell Transplant; 1995; 4(6):539-45. PubMed ID: 8714776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fate of striatal dopaminergic neurons in Parkinson's disease and Huntington's chorea.
    Huot P; Lévesque M; Parent A
    Brain; 2007 Jan; 130(Pt 1):222-32. PubMed ID: 17142832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington's disease, as demonstrated by adenoviral gene transfer.
    Bemelmans AP; Horellou P; Pradier L; Brunet I; Colin P; Mallet J
    Hum Gene Ther; 1999 Dec; 10(18):2987-97. PubMed ID: 10609659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fetal tissue transplants in animal models of Huntington's disease: the effects on damaged neuronal circuitry and behavioral deficits.
    Nakao N; Itakura T
    Prog Neurobiol; 2000 Jun; 61(3):313-38. PubMed ID: 10727778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural cells from primary human striatal xenografts migrate extensively in the adult rat CNS.
    Hurelbrink CB; Armstrong RJ; Dunnett SB; Rosser AE; Barker RA
    Eur J Neurosci; 2002 Apr; 15(7):1255-66. PubMed ID: 11982636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DARPP-32-rich zones in grafts of lateral ganglionic eminence govern the extent of functional recovery in skilled paw reaching in an animal model of Huntington's disease.
    Nakao N; Grasbon-Frodl EM; Widner H; Brundin P
    Neuroscience; 1996 Oct; 74(4):959-70. PubMed ID: 8895865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor and cognitive improvements in patients with Huntington's disease after neural transplantation.
    Bachoud-Lévi AC; Rémy P; Nguyen JP; Brugières P; Lefaucheur JP; Bourdet C; Baudic S; Gaura V; Maison P; Haddad B; Boissé MF; Grandmougin T; Jény R; Bartolomeo P; Dalla Barba G; Degos JD; Lisovoski F; Ergis AM; Pailhous E; Cesaro P; Hantraye P; Peschanski M
    Lancet; 2000 Dec; 356(9246):1975-9. PubMed ID: 11130527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional integration of striatal allografts in a primate model of Huntington's disease.
    Kendall AL; Rayment FD; Torres EM; Baker HF; Ridley RM; Dunnett SB
    Nat Med; 1998 Jun; 4(6):727-9. PubMed ID: 9623985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of tau pathology within foetal neural allografts in patients with Huntington's and Parkinson's disease.
    Cisbani G; Maxan A; Kordower JH; Planel E; Freeman TB; Cicchetti F
    Brain; 2017 Nov; 140(11):2982-2992. PubMed ID: 29069396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of severity of host striatal damage on the morphological development of intrastriatal transplants in a rodent model of Huntington's disease: implications for timing of surgical intervention.
    Watts C; Dunnett SB
    J Neurosurg; 1998 Aug; 89(2):267-74. PubMed ID: 9688122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease.
    Vazey EM; Chen K; Hughes SM; Connor B
    Exp Neurol; 2006 Jun; 199(2):384-96. PubMed ID: 16626705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.