These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7478705)

  • 1. Responses of on and off cells in the rostral ventral medulla to stimulation of vagal afferents and changes in mean arterial blood pressure in intact and cardiopulmonary deafferented rats.
    Thurston CL; Randich A
    Pain; 1995 Jul; 62(1):19-38. PubMed ID: 7478705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of vagal afferents and the rostral ventral medulla in intravenous serotonin-induced changes in nociception and arterial blood pressure.
    Thurston-Stanfield CL; Ranieri JT; Vallabhapurapu R; Barnes-Noble D
    Physiol Behav; 1999 Nov; 67(5):753-67. PubMed ID: 10604848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antinociception and cardiovascular responses produced by intravenous morphine: the role of vagal afferents.
    Randich A; Thurston CL; Ludwig PS; Timmerman MR; Gebhart GF
    Brain Res; 1991 Mar; 543(2):256-70. PubMed ID: 2059834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of vagal afferent stimulation on ON and OFF cells in the rostroventral medulla: relationships to nociception and arterial blood pressure.
    Thurston CL; Randich A
    J Neurophysiol; 1992 Jan; 67(1):180-96. PubMed ID: 1552318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intravenous morphine-induced activation of vagal afferents: peripheral, spinal, and CNS substrates mediating inhibition of spinal nociception and cardiovascular responses.
    Randich A; Thurston CL; Ludwig PS; Robertson JD; Rasmussen C
    J Neurophysiol; 1992 Oct; 68(4):1027-45. PubMed ID: 1432065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of specific opioid agonists and antagonists to delineate the vagally mediated antinociceptive and cardiovascular effects of intravenous morphine.
    Randich A; Robertson JD; Willingham T
    Brain Res; 1993 Feb; 603(2):186-200. PubMed ID: 8096421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical stimulation of cervical vagal afferents. II. Central relays for behavioral antinociception and arterial blood pressure decreases.
    Randich A; Ren K; Gebhart GF
    J Neurophysiol; 1990 Oct; 64(4):1115-24. PubMed ID: 2258737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vagal modulation of responses elicited by stimulation of the aortic depressor nerve in neurons of the rostral ventrolateral medulla oblongata in the rat.
    Zagon A; Rocha I; Ishizuka K; Spyer KM
    Neuroscience; 1999; 92(3):889-99. PubMed ID: 10426530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of nociceptive modulatory neurons in the rostral ventromedial medulla associated with volume expansion-induced antinociception.
    Morgan MM; Fields HL
    Pain; 1993 Jan; 52(1):1-9. PubMed ID: 8446430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vagal afferent stimulation-produced effects on nociception in capsaicin-treated rats.
    Ren K; Zhuo M; Randich A; Gebhart GF
    J Neurophysiol; 1993 May; 69(5):1530-40. PubMed ID: 8389827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atypical on-, off- and neutral cells in the rostral ventromedial medulla oblongata in rat.
    Schnell C; Ulucan C; Ellrich J
    Exp Brain Res; 2002 Jul; 145(1):64-75. PubMed ID: 12070746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical stimulation of cervical vagal afferents. I. Central relays for modulation of spinal nociceptive transmission.
    Ren K; Randich A; Gebhart GF
    J Neurophysiol; 1990 Oct; 64(4):1098-114. PubMed ID: 2175352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Late vagal inhibition in neurons of the ventrolateral medulla oblongata in the rat.
    Zagon A; Ishizuka K; Rocha I; Spyer KM
    Neuroscience; 1999; 92(3):877-88. PubMed ID: 10426529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kappa opioids inhibit physiologically identified medullary pain modulating neurons and reduce morphine antinociception.
    Meng ID; Johansen JP; Harasawa I; Fields HL
    J Neurophysiol; 2005 Mar; 93(3):1138-44. PubMed ID: 15456805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Baroreceptor reflex-linked changes in catechol metabolism in the rat rostral ventrolateral medulla.
    Rentero N; Kitahama K; Quintin L
    J Physiol; 1993 Sep; 469():717-37. PubMed ID: 8271225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The circulatory influences of vagal afferents at rest and during coronary occlusion in conscious dogs.
    Bishop VS; Peterson DF
    Circ Res; 1978 Dec; 43(6):840-7. PubMed ID: 709745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla.
    Heinricher MM; Morgan MM; Tortorici V; Fields HL
    Neuroscience; 1994 Nov; 63(1):279-88. PubMed ID: 7898652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of excitatory amino acid transmission within the rostral ventromedial medulla in the antinociceptive actions of systemically administered morphine.
    Heinricher MM; McGaraughty S; Farr DA
    Pain; 1999 May; 81(1-2):57-65. PubMed ID: 10353493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflex control of renal sympathetic nerve activity during furosemide diuresis in rats.
    Petersen JS; DiBona GF
    Am J Physiol; 1994 Feb; 266(2 Pt 2):R537-45. PubMed ID: 8141413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal inhibitory effects of cardiopulmonary afferent inputs in monkeys: neuronal processing in high cervical segments.
    Chandler MJ; Zhang J; Qin C; Foreman RD
    J Neurophysiol; 2002 Mar; 87(3):1290-302. PubMed ID: 11877503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.