These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7478939)

  • 1. Substrate-charge dependence of stoichiometry shows membrane potential is the driving force for proton-peptide cotransport in rat renal cortex.
    Temple CS; Bronk JR; Bailey PD; Boyd CA
    Pflugers Arch; 1995 Sep; 430(5):825-9. PubMed ID: 7478939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for the kinetics of neutral and anionic dipeptide-proton cotransport by the apical membrane of rat kidney cortex.
    Temple CS; Bailey PD; Bronk JR; Boyd CA
    J Physiol; 1996 Aug; 494 ( Pt 3)(Pt 3):795-808. PubMed ID: 8865075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dipeptide transport in brush-border membrane vesicles (BBMV) prepared from human full-term placentae.
    Meredith D; Laynes RW
    Placenta; 1996; 17(2-3):173-9. PubMed ID: 8730888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake of glycine from L-alanylglycine into renal brush border vesicles.
    Welch CL; Campbell BJ
    J Membr Biol; 1980; 54(1):39-50. PubMed ID: 7205942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dipeptide transport characteristics of the apical membrane of rat lung type II pneumocytes.
    Meredith D; Boyd CA
    Am J Physiol; 1995 Aug; 269(2 Pt 1):L137-43. PubMed ID: 7653574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic evidence for a common transporter for glycylsarcosine and phenylalanylprolylalanine in renal brush-border membrane vesicles.
    Tiruppathi C; Ganapathy V; Leibach FH
    J Biol Chem; 1990 Sep; 265(25):14870-4. PubMed ID: 2394703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for tripeptide/H+ co-transport in rabbit renal brush-border membrane vesicles.
    Tiruppathi C; Kulanthaivel P; Ganapathy V; Leibach FH
    Biochem J; 1990 May; 268(1):27-33. PubMed ID: 2160811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stoichiometry and kinetics of the high-affinity H+-coupled peptide transporter PepT2.
    Chen XZ; Zhu T; Smith DE; Hediger MA
    J Biol Chem; 1999 Jan; 274(5):2773-9. PubMed ID: 9915809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of peptides in renal brush border membrane vesicles. Suitability of 125I-labelled tyrosyl peptides as substrates.
    Tiruppathi C; Ganapathy V; Leibach FH
    Biochim Biophys Acta; 1991 Oct; 1069(1):14-20. PubMed ID: 1681904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide aminonitrogen transport by the lactating rat mammary gland.
    Shennan DB; Calvert DT; Backwell FR; Boyd CA
    Biochim Biophys Acta; 1998 Aug; 1373(1):252-60. PubMed ID: 9733976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactate-sodium cotransport in rat renal brush border membranes.
    Barac-Nieto M; Murer H; Kinne R
    Am J Physiol; 1980 Nov; 239(5):F496-506. PubMed ID: 6159793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential recognition of zwitterionic dipeptides as transportable substrates by the high-affinity peptide transporter PEPT2.
    Fei YJ; Nara E; Liu JC; Boyd CA; Ganapathy V; Leibach FH
    Biochim Biophys Acta; 1999 May; 1418(2):344-51. PubMed ID: 10320685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton-coupled oligopeptide transport by rat renal cortical brush border membrane vesicles: a functional analysis using ACE inhibitors to determine the isoform of the transporter.
    Temple CS; Boyd CA
    Biochim Biophys Acta; 1998 Aug; 1373(1):277-81. PubMed ID: 9733984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of glycyl-L-proline transport in intestinal brush-border membrane vesicles.
    Rajendran VM; Harig JM; Ramaswamy K
    Am J Physiol; 1987 Feb; 252(2 Pt 1):G281-6. PubMed ID: 3030128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrogenicity of sodium/L-glutamate cotransport in rabbit renal brush-border membranes: a reevaluation.
    Heinz E; Sommerfeld DL; Kinne RK
    Biochim Biophys Acta; 1988 Jan; 937(2):300-8. PubMed ID: 2892532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carrier-mediated transport of pyroglutamyl-histidine in renal brush border membrane vesicles.
    Skopicki HA; Fisher K; Zikos D; Flouret G; Bloch R; Kubillus S; Peterson DR
    Am J Physiol; 1988 Dec; 255(6 Pt 1):C822-7. PubMed ID: 3202151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloride uptake by brush border membrane vesicles isolated from rabbit renal cortex. Coupling to proton gradients and K+ diffusion potentials.
    Warnock DG; Yee VJ
    J Clin Invest; 1981 Jan; 67(1):103-15. PubMed ID: 7451645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton gradient-coupled uphill transport of glycylsarcosine in rabbit renal brush-border membrane vesicles.
    Miyamoto Y; Ganapathy V; Leibach FH
    Biochem Biophys Res Commun; 1985 Nov; 132(3):946-53. PubMed ID: 4074356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of thiol groups in the function of the dipeptide/proton cotransport system in rabbit renal brush-border membrane vesicles.
    Miyamoto Y; Tiruppathi C; Ganapathy V; Leibach FH
    Biochim Biophys Acta; 1989 Jan; 978(1):25-31. PubMed ID: 2536554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intestinal glycyl-L-phenylalanine and L-phenylalanine transport in a euryhaline teleost.
    Reshkin SJ; Ahearn GA
    Am J Physiol; 1991 Mar; 260(3 Pt 2):R563-9. PubMed ID: 2001005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.