These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
524 related articles for article (PubMed ID: 7479024)
21. Sequence-specific DNA-triplex formation at imperfect homopurine-homopyrimidine sequences within a DNA plasmid. Xodo LE; Alunni-Fabbroni M; Manzini G; Quadrifoglio F Eur J Biochem; 1993 Mar; 212(2):395-401. PubMed ID: 8444176 [TBL] [Abstract][Full Text] [Related]
22. Targeting of single-stranded DNA and RNA containing adjacent pyrimidine and purine tracts by triple helix formation with circular and clamp oligonucleotides. Maksimenko AV; Volkov EM; Bertrand JR; Porumb H; Malvy C; Shabarova ZA; Gottikh MB Eur J Biochem; 2000 Jun; 267(12):3592-603. PubMed ID: 10848976 [TBL] [Abstract][Full Text] [Related]
23. Highly stable DNA triplexes formed with cationic phosphoramidate pyrimidine alpha-oligonucleotides. Michel T; Debart F; Heitz F; Vasseur JJ Chembiochem; 2005 Jul; 6(7):1254-62. PubMed ID: 15912553 [TBL] [Abstract][Full Text] [Related]
24. Exploring Hoogsteen and reversed-Hoogsteen duplex and triplex formation with tricyclo-DNA purine sequences. Renneberg D; Leumann CJ Chembiochem; 2004 Aug; 5(8):1114-8. PubMed ID: 15300836 [TBL] [Abstract][Full Text] [Related]
25. Exclusion of RNA strands from a purine motif triple helix. Semerad CL; Maher LJ Nucleic Acids Res; 1994 Dec; 22(24):5321-5. PubMed ID: 7529405 [TBL] [Abstract][Full Text] [Related]
26. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU. Gowers DM; Bijapur J; Brown T; Fox KR Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282 [TBL] [Abstract][Full Text] [Related]
27. Evidence from CD spectra and melting temperatures for stable Hoogsteen-paired oligomer duplexes derived from DNA and hybrid triplexes. Hashem GM; Wen JD; Do Q; Gray DM Nucleic Acids Res; 1999 Aug; 27(16):3371-9. PubMed ID: 10454646 [TBL] [Abstract][Full Text] [Related]
28. Parallel-stranded duplex DNA containing blocks of trans purine-purine and purine-pyrimidine base pairs. Evertsz EM; Rippe K; Jovin TM Nucleic Acids Res; 1994 Aug; 22(16):3293-303. PubMed ID: 8078763 [TBL] [Abstract][Full Text] [Related]
29. Physicochemical studies of the d(G3T4G3)*d(G3A4G3).d(C3T4C3) triple helix. Scaria PV; Will S; Levenson C; Shafer RH J Biol Chem; 1995 Mar; 270(13):7295-303. PubMed ID: 7706270 [TBL] [Abstract][Full Text] [Related]
30. Synthesis and triplex-forming properties of cyclic oligonucleotides with (G,A)-antiparallel strands. Grimau MG; Aviñó A; Gargallo R; Eritja R Chem Biodivers; 2005 Feb; 2(2):275-85. PubMed ID: 17191980 [TBL] [Abstract][Full Text] [Related]
31. Recruitment of transcription factors to the target site by triplex-forming oligonucleotides. Svinarchuk F; Nagibneva I; Cherny D; Ait-Si-Ali S; Pritchard LL; Robin P; Malvy C; Harel-Bellan A; Chern D Nucleic Acids Res; 1997 Sep; 25(17):3459-64. PubMed ID: 9254704 [TBL] [Abstract][Full Text] [Related]
32. Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix. Pilch DS; Levenson C; Shafer RH Biochemistry; 1991 Jun; 30(25):6081-8. PubMed ID: 2059618 [TBL] [Abstract][Full Text] [Related]
33. Base pairing and steric interactions between pyrimidine strand bridging loops and the purine strand in DNA pyrimidine.purine.pyrimidine triplexes. Booher MA; Wang S; Kool ET Biochemistry; 1994 Apr; 33(15):4645-51. PubMed ID: 8161521 [TBL] [Abstract][Full Text] [Related]
34. Secondary binding sites for triplex-forming oligonucleotides containing bulges, loops, and mismatches in the third strand. Fox KR; Flashman E; Gowers D Biochemistry; 2000 Jun; 39(22):6714-25. PubMed ID: 10828990 [TBL] [Abstract][Full Text] [Related]
35. Nucleosides and nucleotides. 218. Alternate-strand triple-helix formation by the 3'-3'-linked oligodeoxynucleotides using a purine motif. Hoshika S; Ueno Y; Matsuda A Bioconjug Chem; 2003; 14(3):607-13. PubMed ID: 12757386 [TBL] [Abstract][Full Text] [Related]
36. Studies of DNA dumbbells. V. A DNA triplex formed between a 28 base-pair DNA dumbbell substrate and a 16 base linear single strand. Paner TM; Gallo FJ; Doktycz MJ; Benight AS Biopolymers; 1993 Dec; 33(12):1779-89. PubMed ID: 8268406 [TBL] [Abstract][Full Text] [Related]
37. Antiparallel polypurine phosphorothioate oligonucleotides form stable triplexes with the rat alpha1(I) collagen gene promoter and inhibit transcription in cultured rat fibroblasts. Joseph J; Kandala JC; Veerapanane D; Weber KT; Guntaka RV Nucleic Acids Res; 1997 Jun; 25(11):2182-8. PubMed ID: 9153319 [TBL] [Abstract][Full Text] [Related]
38. Thermal stability of G-rich anti-parallel DNA triplexes upon insertion of LNA and α-L-LNA. Kosbar TR; Sofan MA; Abou-Zeid L; Pedersen EB Org Biomol Chem; 2015 May; 13(18):5115-21. PubMed ID: 25833006 [TBL] [Abstract][Full Text] [Related]
39. Specific inhibition of in vitro transcription elongation by triplex-forming oligonucleotide-intercalator conjugates targeted to HIV proviral DNA. Giovannangeli C; Perrouault L; Escudé C; Nguyen T; Hélène C Biochemistry; 1996 Aug; 35(32):10539-48. PubMed ID: 8756710 [TBL] [Abstract][Full Text] [Related]
40. Short pyrimidine stretches containing mixed base PNAs are versatile tools to induce translation elongation arrest and truncated protein synthesis. Sénamaud-Beaufort C; Leforestier E; Saison-Behmoaras TE Oligonucleotides; 2003; 13(6):465-78. PubMed ID: 15025913 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]