These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 7479698)
1. The cytidylyltransferase superfamily: identification of the nucleotide-binding site and fold prediction. Bork P; Holm L; Koonin EV; Sander C Proteins; 1995 Jul; 22(3):259-66. PubMed ID: 7479698 [TBL] [Abstract][Full Text] [Related]
2. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA. Aravind L; Anantharaman V; Koonin EV Proteins; 2002 Jul; 48(1):1-14. PubMed ID: 12012333 [TBL] [Abstract][Full Text] [Related]
3. A prototypical cytidylyltransferase: CTP:glycerol-3-phosphate cytidylyltransferase from bacillus subtilis. Weber CH; Park YS; Sanker S; Kent C; Ludwig ML Structure; 1999 Sep; 7(9):1113-24. PubMed ID: 10508782 [TBL] [Abstract][Full Text] [Related]
4. Structure prediction and fold recognition for the ferrochelatase family of proteins. Hansson M; Gough SP; Brody SS Proteins; 1997 Apr; 27(4):517-22. PubMed ID: 9141132 [TBL] [Abstract][Full Text] [Related]
5. Structural modeling identified the tRNA-binding domain of Utp8p, an essential nucleolar component of the nuclear tRNA export machinery of Saccharomyces cerevisiae. McGuire AT; Keates RA; Cook S; Mangroo D Biochem Cell Biol; 2009 Apr; 87(2):431-43. PubMed ID: 19370060 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for tRNA-dependent amidotransferase function. Schmitt E; Panvert M; Blanquet S; Mechulam Y Structure; 2005 Oct; 13(10):1421-33. PubMed ID: 16216574 [TBL] [Abstract][Full Text] [Related]
7. The aminoacyl-tRNA synthetase family: modules at work. Delarue M; Moras D Bioessays; 1993 Oct; 15(10):675-87. PubMed ID: 8274143 [TBL] [Abstract][Full Text] [Related]
8. Eukaryotic translation elongation factor 1 gamma contains a glutathione transferase domain--study of a diverse, ancient protein superfamily using motif search and structural modeling. Koonin EV; Mushegian AR; Tatusov RL; Altschul SF; Bryant SH; Bork P; Valencia A Protein Sci; 1994 Nov; 3(11):2045-54. PubMed ID: 7703850 [TBL] [Abstract][Full Text] [Related]
9. Functional convergence of two lysyl-tRNA synthetases with unrelated topologies. Terada T; Nureki O; Ishitani R; Ambrogelly A; Ibba M; Söll D; Yokoyama S Nat Struct Biol; 2002 Apr; 9(4):257-62. PubMed ID: 11887185 [TBL] [Abstract][Full Text] [Related]
10. Sequence and structural analysis of cellular retinoic acid-binding proteins reveals a network of conserved hydrophobic interactions. Gunasekaran K; Hagler AT; Gierasch LM Proteins; 2004 Feb; 54(2):179-94. PubMed ID: 14696180 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase: a new structural family with the P-loop nucleoside triphosphate hydrolase fold. Matte A; Goldie H; Sweet RM; Delbaere LT J Mol Biol; 1996 Feb; 256(1):126-43. PubMed ID: 8609605 [TBL] [Abstract][Full Text] [Related]
12. The crystal structure of an ADP complex of Bacillus subtilis pyridoxal kinase provides evidence for the parallel emergence of enzyme activity during evolution. Newman JA; Das SK; Sedelnikova SE; Rice DW J Mol Biol; 2006 Oct; 363(2):520-30. PubMed ID: 16978644 [TBL] [Abstract][Full Text] [Related]
13. Fold recognition, homology modeling, docking simulations, kinetics analysis and mutagenesis of ATP/CTP:tRNA nucleotidyltransferase from Methanococcus jannaschii. Bujnicki JM; Albert MA; Nelson DJ; Thurlow DL Proteins; 2003 Aug; 52(3):349-59. PubMed ID: 12866049 [TBL] [Abstract][Full Text] [Related]
14. Basic faced alpha-helices are widespread in the peptide extensions of the eukaryotic aminoacyl-tRNA synthetases. Massey SE In Silico Biol; 2006; 6(4):259-73. PubMed ID: 16922690 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon. Blaise M; Olieric V; Sauter C; Lorber B; Roy B; Karmakar S; Banerjee R; Becker HD; Kern D J Mol Biol; 2008 Sep; 381(5):1224-37. PubMed ID: 18602926 [TBL] [Abstract][Full Text] [Related]
16. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding. Sever S; Rogers K; Rogers MJ; Carter C; Söll D Biochemistry; 1996 Jan; 35(1):32-40. PubMed ID: 8555191 [TBL] [Abstract][Full Text] [Related]
17. Secondary structure prediction and unrefined tertiary structure prediction for cyclin A, B, and D. Gerloff DL; Cohen FE Proteins; 1996 Jan; 24(1):18-34. PubMed ID: 8628731 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. Han S; Arvai AS; Clancy SB; Tainer JA J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250 [TBL] [Abstract][Full Text] [Related]
19. Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase. Yanagisawa T; Ishii R; Fukunaga R; Kobayashi T; Sakamoto K; Yokoyama S J Mol Biol; 2008 May; 378(3):634-52. PubMed ID: 18387634 [TBL] [Abstract][Full Text] [Related]
20. The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. Sauter C; Lorber B; Cavarelli J; Moras D; Giegé R J Mol Biol; 2000 Jun; 299(5):1313-24. PubMed ID: 10873455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]