BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 7479758)

  • 1. Crystal structure of the cell cycle-regulatory protein suc1 reveals a beta-hinge conformational switch.
    Bourne Y; Arvai AS; Bernstein SL; Watson MH; Reed SI; Endicott JE; Noble ME; Johnson LN; Tainer JA
    Proc Natl Acad Sci U S A; 1995 Oct; 92(22):10232-6. PubMed ID: 7479758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the yeast cell-cycle control protein, p13suc1, in a strand-exchanged dimer.
    Khazanovich N; Bateman K; Chernaia M; Michalak M; James M
    Structure; 1996 Mar; 4(3):299-309. PubMed ID: 8805536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure and mutational analysis of the Saccharomyces cerevisiae cell cycle regulatory protein Cks1: implications for domain swapping, anion binding and protein interactions.
    Bourne Y; Watson MH; Arvai AS; Bernstein SL; Reed SI; Tainer JA
    Structure; 2000 Aug; 8(8):841-50. PubMed ID: 10997903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability and folding of the cell cycle regulatory protein, p13(suc1).
    Rousseau F; Schymkowitz JW; Sánchez del Pino M; Itzhaki LS
    J Mol Biol; 1998 Nov; 284(2):503-19. PubMed ID: 9813133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary crystallographic analysis of the Cks protein p13(suc1P90AP92A) from Schizosacharromyces pombe.
    Kelly JA; Williams EA; Wilce MC
    Eur Biophys J; 2005 Jul; 34(5):430-3. PubMed ID: 15843986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The folding pathway of the cell-cycle regulatory protein p13suc1: clues for the mechanism of domain swapping.
    Schymkowitz JW; Rousseau F; Irvine LR; Itzhaki LS
    Structure; 2000 Jan; 8(1):89-100. PubMed ID: 10673431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution NMR study of the monomeric form of p13suc1 protein sheds light on the hinge region determining the affinity for a phosphorylated substrate.
    Odaert B; Landrieu I; Dijkstra K; Schuurman-Wolters G; Casteels P; Wieruszeski JM; Inze D; Scheek R; Lippens G
    J Biol Chem; 2002 Apr; 277(14):12375-81. PubMed ID: 11812792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the human cell cycle protein CksHs1: single domain fold with similarity to kinase N-lobe domain.
    Arvai AS; Bourne Y; Hickey MJ; Tainer JA
    J Mol Biol; 1995 Jun; 249(5):835-42. PubMed ID: 7791211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence conservation provides the best prediction of the role of proline residues in p13suc1.
    Schymkowitz JW; Rousseau F; Itzhaki LS
    J Mol Biol; 2000 Aug; 301(1):199-204. PubMed ID: 10926502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the unfolding pathway of the cell-cycle protein p13suc1 by molecular dynamics simulations: implications for domain swapping.
    Alonso DO; Alm E; Daggett V
    Structure; 2000 Jan; 8(1):101-10. PubMed ID: 10673427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional model of the Cdc2 protein kinase: localization of cyclin- and Suc1-binding regions and phosphorylation sites.
    Marcote MJ; Knighton DR; Basi G; Sowadski JM; Brambilla P; Draetta G; Taylor SS
    Mol Cell Biol; 1993 Aug; 13(8):5122-31. PubMed ID: 8336738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural role of the proline residues of the beta-hinge region of p13suc1 as revealed by site-directed mutagenesis and fluorescence studies.
    Simeoni F; Masotti L; Neyroz P
    Biochemistry; 2001 Jul; 40(27):8030-42. PubMed ID: 11434772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic fluorescence properties and structural analysis of p13(suc1) from Schizosaccharomyces pombe.
    Neyroz P; Menna C; Polverini E; Masotti L
    J Biol Chem; 1996 Nov; 271(44):27249-58. PubMed ID: 8910298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cell cycle and suc1: from structure to function?
    Endicott JA; Nurse P
    Structure; 1995 Apr; 3(4):321-5. PubMed ID: 7613861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p13(SUC1) and the WW domain of PIN1 bind to the same phosphothreonine-proline epitope.
    Landrieu I; Odaert B; Wieruszeski JM; Drobecq H; Rousselot-Pailley P; Inze D; Lippens G
    J Biol Chem; 2001 Jan; 276(2):1434-8. PubMed ID: 11013245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations at sites involved in Suc1 binding inactivate Cdc2.
    Ducommun B; Brambilla P; Draetta G
    Mol Cell Biol; 1991 Dec; 11(12):6177-84. PubMed ID: 1944283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding and association of the human cell cycle regulatory proteins ckshs1 and ckshs2.
    Seeliger MA; Schymkowitz JW; Rousseau F; Wilkinson HR; Itzhaki LS
    Biochemistry; 2002 Jan; 41(4):1202-10. PubMed ID: 11802719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weak cooperativity in the core causes a switch in folding mechanism between two proteins of the cks family.
    Seeliger MA; Breward SE; Itzhaki LS
    J Mol Biol; 2003 Jan; 325(1):189-99. PubMed ID: 12473461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p13suc1 of Schizosaccharomyces pombe regulates two distinct forms of the mitotic cdc2 kinase.
    Basi G; Draetta G
    Mol Cell Biol; 1995 Apr; 15(4):2028-36. PubMed ID: 7891698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suc1: cdc2 affinity reagent or essential cdk adaptor protein?
    Vogel L; Baratte B
    Prog Cell Cycle Res; 1996; 2():129-35. PubMed ID: 9552390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.