BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 7480114)

  • 1. Integrating sphere effect in whole-bladder-wall photodynamic therapy: II. The influence of urine at 458, 488, 514 and 630 nm optical irradiation.
    van Staveren HJ; Beek JF; Keijzer M; Star WM
    Phys Med Biol; 1995 Aug; 40(8):1307-15. PubMed ID: 7480114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating sphere effect in whole bladder wall photodynamic therapy: I. 532 nm versus 630 nm optical irradiation.
    van Staveren HJ; Beek JF; Ramaekers JW; Keijzer M; Star WM
    Phys Med Biol; 1994 Jun; 39(6):947-59. PubMed ID: 15551572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating sphere effect in whole-bladder wall photodynamic therapy: III. Fluence multiplication, optical penetration and light distribution with an eccentric source for human bladder optical properties.
    van Staveren HJ; Keijzer M; Keesmaat T; Jansen H; Kirkel WJ; Beek JF; Star WM
    Phys Med Biol; 1996 Apr; 41(4):579-90. PubMed ID: 8730658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bladder PDT with intravesical clear and light scattering media: effect of an eccentric isotropic light source on the light distribution.
    van Staveren HJ; Bertrams RH; Star WM
    Lasers Surg Med; 1997; 20(3):248-53. PubMed ID: 9138253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ex vivo light dosimetry and Monte Carlo simulations for endobronchial photodynamic therapy.
    Murrer LH; Marijnissen JP; Star WM
    Phys Med Biol; 1995 Nov; 40(11):1807-17. PubMed ID: 8587933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Optical properties of human normal bladder tissue at five different wavelengths of laser and their linearly polarized laser irradiation in vitro].
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Sep; 24(9):1039-41. PubMed ID: 15762517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Optical properties of human normal small intestine tissue with theoretical model of optics about biological tissues at Ar+ laser and 532 nm laser and their linearly polarized laser irradiation in vitro].
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 May; 24(5):524-8. PubMed ID: 15769036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the tumor tissue optical properties during and after photodynamic therapy using inverse Monte Carlo method and double integrating sphere between 350 and 1000 nm.
    Honda N; Ishii K; Terada T; Nanjo T; Awazu K
    J Biomed Opt; 2011 May; 16(5):058003. PubMed ID: 21639587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light penetration in bladder tissue: implications for the intravesical photodynamic therapy of bladder tumours.
    Shackley DC; Whitehurst C; Moore JV; George NJ; Betts CD; Clarke NW
    BJU Int; 2000 Oct; 86(6):638-43. PubMed ID: 11069369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulations for EndoBronchial Photodynamic Therapy: the influence of variations in optical and geometrical properties and of realistic and eccentric light sources.
    Murrer LH; Marijnissen HP; Star WM
    Lasers Surg Med; 1998; 22(4):193-206. PubMed ID: 9603280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques.
    Wei HJ; Xing D; Lu JJ; Gu HM; Wu GY; Jin Y
    World J Gastroenterol; 2005 Apr; 11(16):2413-9. PubMed ID: 15832410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction.
    Holmer C; Lehmann KS; Wanken J; Reissfelder C; Roggan A; Mueller G; Buhr HJ; Ritz JP
    J Biomed Opt; 2007; 12(1):014025. PubMed ID: 17343500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical properties of human normal small intestine tissue determined by Kubelka-Munk method in vitro.
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    World J Gastroenterol; 2003 Sep; 9(9):2068-72. PubMed ID: 12970908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light distribution by linear diffusing sources for photodynamic therapy.
    Murrer LH; Marijnissen JP; Star WM
    Phys Med Biol; 1996 Jun; 41(6):951-61. PubMed ID: 8794477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between integrating sphere and diffusion theory calculations of fluence rate at the wall of a spherical cavity.
    Star WM
    Phys Med Biol; 1995 Jan; 40(1):1-8. PubMed ID: 7708833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulation of light fluence calculation during pleural PDT.
    Meo JL; Zhu T
    Proc SPIE Int Soc Opt Eng; 2013 Feb; 8568():. PubMed ID: 25999640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical properties of tumor tissues grown on the chorioallantoic membrane of chicken eggs: tumor model to assay of tumor response to photodynamic therapy.
    Honda N; Kariyama Y; Hazama H; Ishii T; Kitajima Y; Inoue K; Ishizuka M; Tanaka T; Awazu K
    J Biomed Opt; 2015; 20(12):125001. PubMed ID: 26662299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photodynamic therapy of deep tissue abscess cavities: Retrospective image-based feasibility study using Monte Carlo simulation.
    Baran TM; Choi HW; Flakus MJ; Sharma AK
    Med Phys; 2019 Jul; 46(7):3259-3267. PubMed ID: 31056771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in optical properties of ex vivo rat prostate due to heating.
    Skinner MG; Everts S; Reid AD; Vitkin IA; Lilge L; Sherar MD
    Phys Med Biol; 2000 May; 45(5):1375-86. PubMed ID: 10843110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.