These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7481081)

  • 1. The validity of the Tritrac-R3D Activity Monitor for the assessment of physical activity in children.
    Welk GJ; Corbin CB
    Res Q Exerc Sport; 1995 Sep; 66(3):202-9. PubMed ID: 7481081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the TriTrac-R3D accelerometer and a self-report activity diary with heart-rate monitoring for the assessment of energy expenditure in children.
    Rodriguez G; Béghin L; Michaud L; Moreno LA; Turck D; Gottrand F
    Br J Nutr; 2002 Jun; 87(6):623-31. PubMed ID: 12067433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability and validity of the tritrac-R3D accelerometer during backpacking: a case study.
    DeVoe D; Dalleck L
    Percept Mot Skills; 2001 Aug; 93(1):37-46. PubMed ID: 11693704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The validity of the Tritrac-R3D activity monitor for the assessment of physical activity: II. Temporal relationships among objective assessments.
    Welk GJ; Corbin CB; Kampert JB
    Res Q Exerc Sport; 1998 Dec; 69(4):395-9. PubMed ID: 9864757
    [No Abstract]   [Full Text] [Related]  

  • 5. The accuracy of the TriTrac-R3D accelerometer to estimate energy expenditure.
    Jakicic JM; Winters C; Lagally K; Ho J; Robertson RJ; Wing RR
    Med Sci Sports Exerc; 1999 May; 31(5):747-54. PubMed ID: 10331898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the RT3 Research Tracker and Tritrac R3D accelerometers.
    DeVoe D; Gotshall R; McArthur T
    Percept Mot Skills; 2003 Oct; 97(2):510-8. PubMed ID: 14620239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of the telephone and in-person interview versions of the 7-day PAR.
    Hayden-Wade HA; Coleman KJ; Sallis JF; Armstrong C
    Med Sci Sports Exerc; 2003 May; 35(5):801-9. PubMed ID: 12750590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of activity monitors to estimate energy cost of treadmill exercise.
    King GA; Torres N; Potter C; Brooks TJ; Coleman KJ
    Med Sci Sports Exerc; 2004 Jul; 36(7):1244-51. PubMed ID: 15235333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field trial of a three-dimensional activity monitor: comparison with self report.
    Matthews CE; Freedson PS
    Med Sci Sports Exerc; 1995 Jul; 27(7):1071-8. PubMed ID: 7564975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical activity-related energy expenditure with the RT3 and TriTrac accelerometers in overweight adults.
    Jacobi D; Perrin AE; Grosman N; Doré MF; Normand S; Oppert JM; Simon C
    Obesity (Silver Spring); 2007 Apr; 15(4):950-6. PubMed ID: 17426330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of a computerized physical activity recall with a triaxial motion sensor in middle-school youth.
    McMurray RG; Harrell JS; Bradley CB; Webb JP; Goodman EM
    Med Sci Sports Exerc; 1998 Aug; 30(8):1238-45. PubMed ID: 9710863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Caltrac accelerometer as a physical activity monitor for school-age children.
    Sallis JF; Buono MJ; Roby JJ; Carlson D; Nelson JA
    Med Sci Sports Exerc; 1990 Oct; 22(5):698-703. PubMed ID: 2233210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the CSA accelerometer for assessing children's physical activity.
    Janz KF
    Med Sci Sports Exerc; 1994 Mar; 26(3):369-75. PubMed ID: 8183103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent validation of the Bouchard Diary with an accelerometry-based monitor.
    Wickel EE; Welk GJ; Eisenmann JC
    Med Sci Sports Exerc; 2006 Feb; 38(2):373-9. PubMed ID: 16531909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field evaluation of energy expenditure in women using Tritrac accelerometers.
    Campbell KL; Crocker PR; McKenzie DC
    Med Sci Sports Exerc; 2002 Oct; 34(10):1667-74. PubMed ID: 12370570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reliability, validity, and stability of a measure of physical activity in the elderly.
    Kochersberger G; McConnell E; Kuchibhatla MN; Pieper C
    Arch Phys Med Rehabil; 1996 Aug; 77(8):793-5. PubMed ID: 8702373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparisons of four methods of estimating physical activity in adult women.
    Leenders NYJM ; Sherman WM; Nagaraja HN
    Med Sci Sports Exerc; 2000 Jul; 32(7):1320-6. PubMed ID: 10912900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of methods to estimate physical activity and energy expenditure in African American children.
    Ramírez-Marrero FA; Smith BA; Sherman WM; Kirby TE
    Int J Sports Med; 2005 Jun; 26(5):363-71. PubMed ID: 15895319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinimetric review of motion sensors in children and adolescents.
    de Vries SI; Bakker I; Hopman-Rock M; Hirasing RA; van Mechelen W
    J Clin Epidemiol; 2006 Jul; 59(7):670-80. PubMed ID: 16765269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity and reproducibility of motion sensors in youth: a systematic update.
    De Vries SI; Van Hirtum HW; Bakker I; Hopman-Rock M; Hirasing RA; Van Mechelen W
    Med Sci Sports Exerc; 2009 Apr; 41(4):818-27. PubMed ID: 19276851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.