These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 748154)

  • 1. Excess hydration of beta-lactoglobulin, hemoglobin & gelatin in the presence of neutral salts.
    Mitra SP; Chattoraj DK; Das MN
    Indian J Biochem Biophys; 1978 Jun; 15(3):153-8. PubMed ID: 748154
    [No Abstract]   [Full Text] [Related]  

  • 2. Interfacial characterization of beta-lactoglobulin networks: displacement by bile salts.
    Maldonado-Valderrama J; Woodward NC; Gunning AP; Ridout MJ; Husband FA; Mackie AR; Morris VJ; Wilde PJ
    Langmuir; 2008 Jun; 24(13):6759-67. PubMed ID: 18533634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein adsorption at solid-liquid interfaces: Part IV--Effects of different solid-liquid systems and various neutral salts.
    Hajra S; Chattoraj DK
    Indian J Biochem Biophys; 1991 Aug; 28(4):267-79. PubMed ID: 1752629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low partial specific volumes of beta-lactoglobulin B with covalently linked subunits.
    De Cuyer M; Préaux G; Lontie R
    Arch Int Physiol Biochim; 1973 Dec; 81(5):964. PubMed ID: 4133542
    [No Abstract]   [Full Text] [Related]  

  • 5. Thermal stability & excess free energy of hydration of bovine serum albumin in the presence of neutral salts.
    Mitra SP; Chattoraj DK
    Indian J Biochem Biophys; 1978 Aug; 15(4):239-44. PubMed ID: 738740
    [No Abstract]   [Full Text] [Related]  

  • 6. Protein adsorption at solid-liquid interfaces: Part II--Adsorption from binary protein mixture.
    Hajra S; Chattoraj DK
    Indian J Biochem Biophys; 1991 Apr; 28(2):124-32. PubMed ID: 1879869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The lysis of proteins with cyanogen bromide (author's transl)].
    Braunitzer G; Aschauer HJ
    Hoppe Seylers Z Physiol Chem; 1975 Apr; 356(4):473-4. PubMed ID: 1171075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the physical state of water in living cells and model systems. III. The high osmotic activities of aqueous solutions of gelatin, polyvinylpyrrolidone and poly (ethylene oxide) and their relation to the reduced solubility for NA+, sugars, and free amino acids.
    Ling GN
    Physiol Chem Phys Med NMR; 1983; 15(2):155-65. PubMed ID: 6665044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular interactions in beta-lactoglobulin. X. The stoichiometry of the beta-lactoglobulin mixed tetramerization.
    Kumosinski TF; Timasheff SN
    J Am Chem Soc; 1966 Dec; 88(23):2635-42. PubMed ID: 5980172
    [No Abstract]   [Full Text] [Related]  

  • 10. Static and dynamic light scattering approach to the hydration of hemoglobin and its supertetramers in the presence of osmolites.
    Arosio D; Kwansa HE; Gering H; Piszczek G; Bucci E
    Biopolymers; 2002 Jan; 63(1):1-11. PubMed ID: 11754343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deuteron and proton magnetic resonance relaxation study of beta-lactoglobulin a association: some approaches to the Scatchard hydration of globular proteins.
    Kumosinski TF; Pessen H
    Arch Biochem Biophys; 1982 Oct; 218(1):286-302. PubMed ID: 6293385
    [No Abstract]   [Full Text] [Related]  

  • 12. Laevorotation between pH 5.1 and 8.8 of beta-lactoglobulin A and B with blocked thiol groups.
    Roels H; Préaux G; Lontie R
    Arch Int Physiol Biochim; 1968 Feb; 76(1):198-200. PubMed ID: 4175046
    [No Abstract]   [Full Text] [Related]  

  • 13. Binding of water and solute to protein-mixture and protein-coated alumina.
    Dutta P; Hajra S; Chattoraj DK
    Indian J Biochem Biophys; 1997 Oct; 34(5):449-60. PubMed ID: 9594425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reaction of 4-(p-trimethylammoniumphenylazo)-2-chloromercuriphenol with the thiol groups of beta-lactoglobulin.
    Bloemmen J; Joniau M; Lontie R
    Arch Int Physiol Biochim; 1967 Jun; 75(3):552-3. PubMed ID: 4167731
    [No Abstract]   [Full Text] [Related]  

  • 15. Chemical phosphorylation of bovine beta-lactoglobulin.
    Woo SL; Creamer LK; Richardson T
    J Agric Food Chem; 1982; 30(1):65-70. PubMed ID: 7061767
    [No Abstract]   [Full Text] [Related]  

  • 16. Interfacial and foaming properties of sulfydryl-modified bovine beta-lactoglobulin.
    Croguennec T; Renault A; Bouhallab S; Pezennec S
    J Colloid Interface Sci; 2006 Oct; 302(1):32-9. PubMed ID: 16876179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarized fluorescence decay curves for beta-lactoglobulin A in various states of association.
    Wahl P; Timasheff SN
    Biochemistry; 1969 Jul; 8(7):2945-9. PubMed ID: 5808347
    [No Abstract]   [Full Text] [Related]  

  • 18. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of disproportionation of air bubbles beneath a planar air-water interface stabilized by food proteins.
    Dickinson E; Ettelaie R; Murray BS; Du Z
    J Colloid Interface Sci; 2002 Aug; 252(1):202-13. PubMed ID: 16290780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trifluoroethanol-induced beta --> alpha transition in beta-lactoglobulin: hydration and cosolvent binding studied by 2H, 17O, and 19F magnetic relaxation dispersion.
    Kumar S; Modig K; Halle B
    Biochemistry; 2003 Nov; 42(46):13708-16. PubMed ID: 14622017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.