These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 7482552)

  • 1. Cancer and non-cancer risk assessment: not so different if you consider mechanisms.
    Conolly RB
    Toxicology; 1995 Sep; 102(1-2):179-88. PubMed ID: 7482552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroform mode of action: implications for cancer risk assessment.
    Golden RJ; Holm SE; Robinson DE; Julkunen PH; Reese EA
    Regul Toxicol Pharmacol; 1997 Oct; 26(2):142-55. PubMed ID: 9356278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive approach for integration of toxicity and cancer risk assessments.
    Butterworth BE; Bogdanffy MS
    Regul Toxicol Pharmacol; 1999 Feb; 29(1):23-36. PubMed ID: 10051416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing uncertainty in risk assessment by using specific knowledge to replace default options.
    McClellan RO
    Drug Metab Rev; 1996; 28(1-2):149-79. PubMed ID: 8744594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biologically motivated computational modeling of formaldehyde carcinogenicity in the F344 rat.
    Conolly RB; Kimbell JS; Janszen D; Schlosser PM; Kalisak D; Preston J; Miller FJ
    Toxicol Sci; 2003 Oct; 75(2):432-47. PubMed ID: 12857938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of mechanistic information in risk assessment for toxic chemicals.
    Becking GC
    Toxicol Lett; 1995 May; 77(1-3):15-24. PubMed ID: 7618129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human respiratory tract cancer risks of inhaled formaldehyde: dose-response predictions derived from biologically-motivated computational modeling of a combined rodent and human dataset.
    Conolly RB; Kimbell JS; Janszen D; Schlosser PM; Kalisak D; Preston J; Miller FJ
    Toxicol Sci; 2004 Nov; 82(1):279-96. PubMed ID: 15254341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threshold and non-threshold chemical carcinogens: A survey of the present regulatory landscape.
    Bevan RJ; Harrison PTC
    Regul Toxicol Pharmacol; 2017 Aug; 88():291-302. PubMed ID: 28119000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Addressing nonlinearity in the exposure-response relationship for a genotoxic carcinogen: cancer potency estimates for ethylene oxide.
    Kirman CR; Sweeney LM; Teta MJ; Sielken RL; Valdez-Flores C; Albertini RJ; Gargas ML
    Risk Anal; 2004 Oct; 24(5):1165-83. PubMed ID: 15563286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA reactivity as a mode of action and its relevance to cancer risk assessment.
    Preston RJ
    Toxicol Pathol; 2013 Feb; 41(2):322-5. PubMed ID: 23085981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dose-dependence of chemical carcinogenicity: Biological mechanisms for thresholds and implications for risk assessment.
    Clewell RA; Thompson CM; Clewell HJ
    Chem Biol Interact; 2019 Mar; 301():112-127. PubMed ID: 30763550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approaches for the setting of occupational exposure limits (OELs) for carcinogens.
    Högberg J; Järnberg J
    Crit Rev Toxicol; 2023 Dec; 53(3):131-167. PubMed ID: 37366107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of in vivo mutation data can inform cancer risk assessment.
    Moore MM; Heflich RH; Haber LT; Allen BC; Shipp AM; Kodell RL
    Regul Toxicol Pharmacol; 2008 Jul; 51(2):151-61. PubMed ID: 18321622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear-No-Threshold Default Assumptions for Noncancer and Nongenotoxic Cancer Risks: A Mathematical and Biological Critique.
    Bogen KT
    Risk Anal; 2016 Mar; 36(3):589-604. PubMed ID: 26249816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The linearized multistage model and the future of quantitative risk assessment.
    Crump KS
    Hum Exp Toxicol; 1996 Oct; 15(10):787-98. PubMed ID: 8906427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biologically based modeling in toxicology research.
    Andersen ME; Krishnan K; Conolly RB; McClellan RO
    Arch Toxicol Suppl; 1992; 15():217-27. PubMed ID: 1510591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer risk assessment for 1,3-butadiene: data integration opportunities.
    Preston RJ
    Chem Biol Interact; 2007 Mar; 166(1-3):150-5. PubMed ID: 16647696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Future of toxicology--low-dose toxicology and risk--benefit analysis.
    Rietjens IM; Alink GM
    Chem Res Toxicol; 2006 Aug; 19(8):977-81. PubMed ID: 16918235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lessons learned in applying the U.S. EPA proposed cancer guidelines to specific compounds.
    Andersen ME; Meek ME; Boorman GA; Brusick DJ; Cohen SM; Dragan YP; Frederick CB; Goodman JI; Hard GC; O'Flaherty EJ; Robinson DE
    Toxicol Sci; 2000 Feb; 53(2):159-72. PubMed ID: 10696764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian estimation of pharmacokinetic and pharmacodynamic parameters in a mode-of-action-based cancer risk assessment for chloroform.
    Liao KH; Tan YM; Conolly RB; Borghoff SJ; Gargas ML; Andersen ME; Clewell HJ
    Risk Anal; 2007 Dec; 27(6):1535-51. PubMed ID: 18093051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.