These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7482565)

  • 1. Use of quantitative modelling in methylene chloride risk assessment.
    Rhomberg L
    Toxicology; 1995 Sep; 102(1-2):95-114. PubMed ID: 7482565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revised assessment of cancer risk to dichloromethane II. Application of probabilistic methods to cancer risk determinations.
    David RM; Clewell HJ; Gentry PR; Covington TR; Morgott DA; Marino DJ
    Regul Toxicol Pharmacol; 2006 Jun; 45(1):55-65. PubMed ID: 16439044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylene chloride induced mouse liver and lung tumours: an overview of the role of mechanistic studies in human safety assessment.
    Green T
    Hum Exp Toxicol; 1997 Jan; 16(1):3-13. PubMed ID: 9023569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride.
    Andersen ME; Clewell HJ; Gargas ML; Smith FA; Reitz RH
    Toxicol Appl Pharmacol; 1987 Feb; 87(2):185-205. PubMed ID: 3824380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro metabolism of methylene chloride in human and animal tissues: use in physiologically based pharmacokinetic models.
    Reitz RH; Mendrala AL; Guengerich FP
    Toxicol Appl Pharmacol; 1989 Feb; 97(2):230-46. PubMed ID: 2922756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiologically based pharmacokinetics and cancer risk assessment.
    Andersen ME; Krishnan K
    Environ Health Perspect; 1994 Jan; 102 Suppl 1(Suppl 1):103-8. PubMed ID: 8187697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating biological information in quantitative risk assessment: an example with methylene chloride.
    Clewell HJ
    Toxicology; 1995 Sep; 102(1-2):83-94. PubMed ID: 7482564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of glutathione transferase theta polymorphism on the risk estimates of dichloromethane to humans.
    El-Masri HA; Bell DA; Portier CJ
    Toxicol Appl Pharmacol; 1999 Aug; 158(3):221-30. PubMed ID: 10438655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating the risk of human cancer associated with exposure to methylene chloride.
    Reitz RH
    Ann Ist Super Sanita; 1991; 27(4):609-14. PubMed ID: 1820733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the potential impact of benchmark dose and pharmacokinetic modeling in noncancer risk assessment.
    Clewell HJ; Gentry PR; Gearhart JM
    J Toxicol Environ Health; 1997 Dec; 52(6):475-515. PubMed ID: 9397182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revised assessment of cancer risk to dichloromethane: part I Bayesian PBPK and dose-response modeling in mice.
    Marino DJ; Clewell HJ; Gentry PR; Covington TR; Hack CE; David RM; Morgott DA
    Regul Toxicol Pharmacol; 2006 Jun; 45(1):44-54. PubMed ID: 16442684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species differences in carcinogenicity: the role of metabolism and pharmacokinetics in risk assessment.
    Green T
    Ann Ist Super Sanita; 1991; 27(4):595-9. PubMed ID: 1820731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended Analysis and Evidence Integration of Chloroprene as a Human Carcinogen.
    Sax SN; Gentry PR; Van Landingham C; Clewell HJ; Mundt KA
    Risk Anal; 2020 Feb; 40(2):294-318. PubMed ID: 31524302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Workshop overview: reassessment of the cancer risk of dichloromethane in humans.
    Starr TB; Matanoski G; Anders MW; Andersen ME
    Toxicol Sci; 2006 May; 91(1):20-8. PubMed ID: 16507920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiologically based pharmacokinetic modeling of inhalation exposure of humans to dichloromethane during moderate to heavy exercise.
    Jonsson F; Bois F; Johanson G
    Toxicol Sci; 2001 Feb; 59(2):209-18. PubMed ID: 11158713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cancer risk assessment of di(2-ethylhexyl)phthalate: application of the new U.S. EPA Risk Assessment Guidelines.
    Doull J; Cattley R; Elcombe C; Lake BG; Swenberg J; Wilkinson C; Williams G; van Gemert M
    Regul Toxicol Pharmacol; 1999 Jun; 29(3):327-57. PubMed ID: 10388618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatic and pulmonary carcinogenicity of methylene chloride in mice: a search for mechanisms.
    Maronpot RR; Devereux TR; Hegi M; Foley JF; Kanno J; Wiseman R; Anderson MW
    Toxicology; 1995 Sep; 102(1-2):73-81. PubMed ID: 7482563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiologically-based pharmacokinetic models in risk and exposure assessment.
    Blancato JN
    Ann Ist Super Sanita; 1991; 27(4):601-8. PubMed ID: 1820732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of varying exposure regimens on methylene chloride-induced lung and liver tumors in female B6C3F1 mice.
    Kari FW; Foley JF; Seilkop SK; Maronpot RR; Anderson MW
    Carcinogenesis; 1993 May; 14(5):819-26. PubMed ID: 8504473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Species differences in carcinogen metabolism and interspecies extrapolation.
    Dybing E; Huitfeldt HS
    IARC Sci Publ; 1992; (116):501-22. PubMed ID: 1428094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.