These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 7483678)
1. Mechanism of transmission and modulation of renal pain in cats; effect of nucleus raphe magnus stimulation on renal pain. Baik EJ; Jeong Y; Nam TS; Kim WK; Paik KS Yonsei Med J; 1995 Sep; 36(4):348-60. PubMed ID: 7483678 [TBL] [Abstract][Full Text] [Related]
2. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat. Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M J Neurophysiol; 1983 Dec; 50(6):1433-45. PubMed ID: 6663336 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of transmission and modulation of renal pain in cats; effects of transcutaneous electrical nerve stimulation on renal pain. Nam TS; Baik EJ; Shin YU; Jeong Y; Paik KS Yonsei Med J; 1995 May; 36(2):187-201. PubMed ID: 7618365 [TBL] [Abstract][Full Text] [Related]
4. Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in the cat. Sandkühler J; Fu QG; Zimmermann M J Neurophysiol; 1987 Aug; 58(2):327-41. PubMed ID: 3655871 [TBL] [Abstract][Full Text] [Related]
5. Viscerosomatic neurons in the lower thoracic spinal cord of the cat: excitations and inhibitions evoked by splanchnic and somatic nerve volleys and by stimulation of brain stem nuclei. Tattersall JE; Cervero F; Lumb BM J Neurophysiol; 1986 Nov; 56(5):1411-23. PubMed ID: 3794775 [TBL] [Abstract][Full Text] [Related]
6. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and nonnociceptive neurons. Dostrovsky JO; Shah Y; Gray BG J Neurophysiol; 1983 Apr; 49(4):948-60. PubMed ID: 6854363 [TBL] [Abstract][Full Text] [Related]
7. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and nonnociceptive neurons. Gray BG; Dostrovsky JO J Neurophysiol; 1983 Apr; 49(4):932-47. PubMed ID: 6854362 [TBL] [Abstract][Full Text] [Related]
8. [The modulation of cerebral cortex and subcortical nuclei on NRM and their role in acupuncture analgesia]. Liu X Zhen Ci Yan Jiu; 1996; 21(1):4-11. PubMed ID: 9387347 [TBL] [Abstract][Full Text] [Related]
9. [The effects of electrical stimulation of nucleus raphe magnus and nucleus reticularis gigantocellularis on medial thalamic neurons--special reference to noxious neurons]. Miyamoto T No To Shinkei; 1988 Oct; 40(10):971-8. PubMed ID: 3196501 [TBL] [Abstract][Full Text] [Related]
10. Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain. Abols IA; Basbaum AI J Comp Neurol; 1981 Sep; 201(2):285-97. PubMed ID: 7287930 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of feline spinal cord dorsal horn neurons following electrical stimulation of nucleus paragigantocellularis lateralis. A comparison with nucleus raphe magnus. Gray BG; Dostrovsky JO Brain Res; 1985 Dec; 348(2):261-73. PubMed ID: 4075085 [TBL] [Abstract][Full Text] [Related]
12. Effects of electrical and chemical stimulation of nucleus raphe magnus on responses to renal nerve stimulation. Knuepfer MM; Holt IL Brain Res; 1991 Mar; 543(2):327-34. PubMed ID: 1676333 [TBL] [Abstract][Full Text] [Related]
13. [The role of negative feedback modulating pain of nucleus raphe magnus in electroacupuncture analgesia]. Liu X Zhen Ci Yan Jiu; 1990; 15(3):159-66. PubMed ID: 2125870 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of spinal nociceptive neurons by microinjections of somatostatin into the nucleus raphe magnus and the midbrain periaqueductal gray of the anesthetized cat. Helmchen C; Fu QG; Sandkühler J Neurosci Lett; 1995 Mar; 187(2):137-41. PubMed ID: 7783961 [TBL] [Abstract][Full Text] [Related]
15. Physiological characteristics of the projection pathway from the medial preoptic to the nucleus raphe magnus of the rat and its modulation by the periaqueductal gray. Jiang M; Behbehani MM Pain; 2001 Nov; 94(2):139-147. PubMed ID: 11690727 [TBL] [Abstract][Full Text] [Related]
16. Parabrachial area and nucleus raphe magnus-induced modulation of nociceptive and nonnociceptive trigeminal subnucleus caudalis neurons activated by cutaneous or deep inputs. Chiang CY; Hu JW; Sessle BJ J Neurophysiol; 1994 Jun; 71(6):2430-45. PubMed ID: 7931526 [TBL] [Abstract][Full Text] [Related]
17. Effects of periaqueductal gray and raphe magnus stimulation on the responses of spinocervical and other ascending projection neurons to non-noxious inputs. Kajander KC; Ebner TJ; Bloedel JR Brain Res; 1984 Jan; 291(1):29-37. PubMed ID: 6697183 [TBL] [Abstract][Full Text] [Related]
18. [Relationship between neurons in the nucleus raphe magnus and motor reflex evoked by noxious stimulation]. Zou T; Liu X Zhen Ci Yan Jiu; 1990; 15(3):173-6. PubMed ID: 2125873 [TBL] [Abstract][Full Text] [Related]
19. Evidence that raphe-spinal neurons mediate opiate and midbrain stimulation-produced analgesias. Fields HL; Anderson SD Pain; 1978 Dec; 5(4):333-349. PubMed ID: 216966 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of nociceptive neuronal responses in the cat's spinal dorsal horn by electrical stimulation and morphine microinjection in nucleus raphe magnus. Du HJ; Kitahata LM; Thalhammer JG; Zimmermann M Pain; 1984 Jul; 19(3):249-257. PubMed ID: 6472873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]