These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 7483911)

  • 1. [Potassium ion transport in the erythrocytes of the frog Rana ridibunda].
    Agalakova NI; Lapin AV; Gusev GP
    Zh Evol Biokhim Fiziol; 1995; 31(2):161-9. PubMed ID: 7483911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium transport in red blood cells of frog Rana temporaria: demonstration of a K-Cl cotransport.
    Gusev GP; Agalakova NI; Lapin AV
    J Comp Physiol B; 1995; 165(3):230-7. PubMed ID: 7665736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of fluoride and vanadate on K+ transport across the erythrocyte membrane of Rana temporaria.
    Agalakova NI; Lapin AV; Gusev GP
    Membr Cell Biol; 2000; 13(4):527-36. PubMed ID: 10926370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of shrinkage-induced potassium influx in rat and human erythrocytes.
    Orlov SN; Pokudin NI; Gurlo TG; Okun IM; Aksentsev SL; Konev SV
    Gen Physiol Biophys; 1991 Aug; 10(4):359-71. PubMed ID: 1663056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition and stimulation of K+ transport across the frog erythrocyte membrane by furosemide, DIOA, DIDS and quinine.
    Gusev GP; Lapin AV; Agalakova NI
    Gen Physiol Biophys; 1999 Sep; 18(3):269-82. PubMed ID: 10703743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling.
    Gusev GP; Lapin AV; Agulakova NI
    Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature effects on ion transport across the erythrocyte membrane of the frog Rana temporaria.
    Agalakova NI; Lapin AV; Gusev GP
    Comp Biochem Physiol A Physiol; 1997 Jul; 117(3):411-8. PubMed ID: 9172392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythrocyte cationic transport systems in normal male and female volunteers.
    Lijnen P; M'Buyamba-Kabangu JR; Lissens W; Amery A
    Methods Find Exp Clin Pharmacol; 1985 Jan; 7(1):35-40. PubMed ID: 2985891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of the potassium influx in rat erythrocytes.
    Ihrig I; Schönheit C; Häussner W; Bernhardt I
    Gen Physiol Biophys; 1992 Aug; 11(4):377-88. PubMed ID: 1330816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular sodium, potassium and magnesium concentration, ouabain-sensitive 86rubidium-uptake and sodium-efflux and Na+, K+-cotransport activity in erythrocytes of normal male subjects studied on two occasions.
    Lijnen P; Hespel P; Lommelen G; Laermans M; M'Buyamba-Kabangu JR; Amery A
    Methods Find Exp Clin Pharmacol; 1986 Sep; 8(9):525-33. PubMed ID: 3773597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Na+ and K+ ion transport across the human erythrocyte membrane during the formation of nystatin channels under in-vitro conditions: the characteristics and an analysis of the processes].
    Borisov IuA; Soboleva OIu; Suglobova ED; Fedorovich EE
    Tsitologiia; 1994; 36(5):427-36. PubMed ID: 7809978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of the Na(+)-K+ pump in frog erythrocytes by catecholamines and phosphodiesterase blockers.
    Gusev GP; Agalakova NI; Lapin AV
    Biochem Pharmacol; 1996 Nov; 52(9):1347-53. PubMed ID: 8937444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of metabolic depletion on the furosemide-sensitive Na and K fluxes in human red cells.
    Dagher G; Brugnara C; Canessa M
    J Membr Biol; 1985; 86(2):145-55. PubMed ID: 2993628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride transport in red blood cells of lamprey Lampetra fluviatilis: evidence for a novel anion-exchange system.
    Bogdanova AYu ; Sherstobitov AO; Gusev GP
    J Exp Biol; 1998 Mar; 201(Pt 5):693-700. PubMed ID: 9542152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ouabain-uninhibited sodium transport in human erythrocytes. Evidence against a second pump.
    Dunn MJ
    J Clin Invest; 1973 Mar; 52(3):658-70. PubMed ID: 4265384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium channels of the lamprey erythrocyte membrane exhibit a high selectivity to K+ over Rb+: a comparative study of 86Rb and 41K transport.
    Gusev GP; Fleishman DG; Nikiforov VA; Sherstobitov AO
    Gen Physiol Biophys; 1997 Sep; 16(3):273-84. PubMed ID: 9452948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correction of hypokalemia corrects the abnormalities in erythrocyte sodium transport in Bartter's syndrome.
    Korff JM; Siebens AW; Gill JR
    J Clin Invest; 1984 Nov; 74(5):1724-9. PubMed ID: 6501567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium and potassium transport in trout (Salmo gairdneri) erythrocytes.
    Bourne PK; Cossins AR
    J Physiol; 1984 Feb; 347():361-75. PubMed ID: 6707960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An amiloride-sensitive, volume-dependent Na+ transport across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
    Gusev GP; Sherstobitov AO
    Gen Physiol Biophys; 1996 Apr; 15(2):129-43. PubMed ID: 8899417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.
    Wiley JS; Cooper RA
    J Clin Invest; 1974 Mar; 53(3):745-55. PubMed ID: 4812437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.