BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 7483911)

  • 21. Characterization of the K+ (Na+)/H+ monovalent cation exchanger in the human red blood cell membrane: effects of transport inhibitors.
    Bernhardt I; Bogdanova AY; Kummerow D; Kiessling K; Hamann J; Ellory JC
    Gen Physiol Biophys; 1999 Jun; 18(2):119-37. PubMed ID: 10517288
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cation transport in intact erythrocytes of hyperthyroid patients: role of the NaK-ATPase pump.
    Michels RC; Ober KP; Hennessy JF
    Horm Metab Res; 1981 Nov; 13(11):635-8. PubMed ID: 6273279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Voltage modulation of Na+/K+ transport in human erythrocytes.
    Teissie J; Yow Tsong T
    J Physiol (Paris); 1981 May; 77(9):1043-53. PubMed ID: 6286955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of external sodium on ouabain-insensitive K influx in fresh human red blood cells.
    Pfliegler G; Kelemen E; Szabó B
    Acta Biochim Biophys Acad Sci Hung; 1984; 19(3-4):281-8. PubMed ID: 6545635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chloride-activated passive potassium transport in human erythrocytes.
    Dunham PB; Stewart GW; Ellory JC
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1711-5. PubMed ID: 6929518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The transport of univalent thallium across the human erythrocyte membrane].
    Sherstobitov AO; Gusev GP; Skul'skiĭ IA
    Tsitologiia; 1990; 32(3):239-44. PubMed ID: 2171170
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression and role of sodium, potassium, chloride cotransport (NKCC1) in mouse inner medullary collecting duct (mIMCD-K2) epithelial cells.
    Glanville M; Kingscote S; Thwaites DT; Simmons NL
    Pflugers Arch; 2001 Oct; 443(1):123-31. PubMed ID: 11692276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active and passive transport of sodium and potassium ions in erythrocytes of severely malnourished Jamaican children.
    Willis JS; Golden MH
    Eur J Clin Nutr; 1988 Aug; 42(8):635-45. PubMed ID: 3141142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibitin: a specific inhibitor of sodium/sodium exchange in erythrocytes.
    Morgan K; Brown RC; Spurlock G; Southgate K; Mir MA
    J Clin Invest; 1986 Feb; 77(2):538-44. PubMed ID: 2418064
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An effect of chloride on (Na+K) co-transport in human red blood cells.
    Chipperfield AR
    Nature; 1980 Jul; 286(5770):281-2. PubMed ID: 6250053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potassium influx into erythrocytes in essential hypertension.
    Bin Talib HK; Chipperfield AR; Semple PF
    J Hypertens; 1984 Aug; 2(4):405-9. PubMed ID: 6530548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of ouabain on the breakdown of adenine nucleotides in glucose-depleted nucleated red blood cells. Characterization of ATPase.
    Kaloyianni M; Tsikriktsi O; Tsianopoulou P
    Gen Physiol Biophys; 1998 Jun; 17(2):143-56. PubMed ID: 9785102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Further studies of hormone-sensitive sodium and potassium transport in red cells from developing chick embryos.
    Shanbaky NM; Wacholtz MC; Sha'afi RI
    J Cell Physiol; 1981 May; 107(2):303-8. PubMed ID: 6265478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Relation between ouabain-insensitive differential sodium flux and sodium concentrations in solution].
    Ambartsumian TG; Adamian SIa; Marikian GG
    Biofizika; 1980; 25(6):1037-40. PubMed ID: 6256008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methodological assessment of assays for intracellular concentration and transmembrane fluxes of sodium and potassium in erythrocytes of man.
    Lijnen P; Groeseneken D; Laermans M; Lommelen G; Piccart Y; Amery A
    Methods Find Exp Clin Pharmacol; 1984 Jun; 6(6):293-301. PubMed ID: 6087051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro effect of xipamide on sodium-potassium transport systems in human erythrocytes.
    Lijnen P; Fagard R; Staessen J; Amery A
    Methods Find Exp Clin Pharmacol; 1988 Aug; 10(8):527-30. PubMed ID: 3226221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Red cell ouabain-resistant Na+ and K+ transport in Wistar, brown Norway and spontaneously hypertensive rats.
    Bin Talib HK; Zicha J
    Physiol Res; 1993; 42(3):181-8. PubMed ID: 8218151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of alteration of sodium potassium pump of erythrocytes from patients with chronic renal failure.
    Cheng JT; Kahn T; Kaji DM
    J Clin Invest; 1984 Nov; 74(5):1811-20. PubMed ID: 6094614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Transport of ions into human erythrocytes in various forms of hemolytic anemia: a correlation analysis].
    Orlov SN; Pokudin NI; El'-Rabi LS; Brusovanik VI; Kubatiev AA
    Biokhimiia; 1993 Jun; 58(6):866-73. PubMed ID: 8364110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potassium transport in normal and transformed mouse 3T3 cells.
    Spaggiare S; Wallach MJ; Tupper JT
    J Cell Physiol; 1976 Nov; 89(3):403-16. PubMed ID: 977660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.