These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 7484625)

  • 1. Normal MR appearance of the pituitary gland in the first 2 years of life.
    Dietrich RB; Lis LE; Greensite FS; Pitt D
    AJNR Am J Neuroradiol; 1995 Aug; 16(7):1413-9. PubMed ID: 7484625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MR imaging of the pituitary gland in infants and children: changes in size, shape, and MR signal with growth and development.
    Tien RD; Kucharczyk J; Bessette J; Middleton M
    AJR Am J Roentgenol; 1992 May; 158(5):1151-4. PubMed ID: 1566682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal pituitary gland: changes in shape, size, and signal intensity during the 1st year of life at MR imaging.
    Cox TD; Elster AD
    Radiology; 1991 Jun; 179(3):721-4. PubMed ID: 2027981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bright pituitary gland--a normal MR appearance in infancy.
    Wolpert SM; Osborne M; Anderson M; Runge VM
    AJNR Am J Neuroradiol; 1988; 9(1):1-3. PubMed ID: 3124560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normal development of the pituitary gland: assessment with three-dimensional MR volumetry.
    Takano K; Utsunomiya H; Ono H; Ohfu M; Okazaki M
    AJNR Am J Neuroradiol; 1999 Feb; 20(2):312-5. PubMed ID: 10094362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T1 signal intensity and height of the anterior pituitary in neonates: correlation with postnatal time.
    Kitamura E; Miki Y; Kawai M; Itoh H; Yura S; Mori N; Sugimura K; Togashi K
    AJNR Am J Neuroradiol; 2008 Aug; 29(7):1257-60. PubMed ID: 18417600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size and shape of the pituitary gland during pregnancy and post partum: measurement with MR imaging.
    Elster AD; Sanders TG; Vines FS; Chen MY
    Radiology; 1991 Nov; 181(2):531-5. PubMed ID: 1924800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pituitary gland: MR imaging of physiologic hypertrophy in adolescence.
    Elster AD; Chen MY; Williams DW; Key LL
    Radiology; 1990 Mar; 174(3 Pt 1):681-5. PubMed ID: 2305049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pituitary gland: changes on MR images during the 1st year after delivery.
    Miki Y; Kataoka ML; Shibata T; Haque TL; Kanagaki M; Shimono T; Okada T; Hiraga A; Nishizawa S; Ueda H; Rahman M; Konishi J
    Radiology; 2005 Jun; 235(3):999-1004. PubMed ID: 15833983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo assessment of pituitary gland volume with magnetic resonance imaging: the effect of age.
    Lurie SN; Doraiswamy PM; Husain MM; Boyko OB; Ellinwood EH; Figiel GS; Krishnan KR
    J Clin Endocrinol Metab; 1990 Aug; 71(2):505-8. PubMed ID: 2380345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pituitary gland: development, normal appearances, and magnetic resonance imaging protocols.
    Castillo M
    Top Magn Reson Imaging; 2005 Jul; 16(4):259-68. PubMed ID: 16785841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age related signal changes of the pituitary stalk on thin-slice magnetic resonance imaging in infants.
    Okazaki T; Niwa T; Suzuki K; Shibukawa S; Imai Y
    Brain Dev; 2019 Apr; 41(4):327-333. PubMed ID: 30514608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pubertal hormones predict sex-specific trajectories of pituitary gland volume during the transition from childhood to adolescence.
    Whittle S; Barendse M; Pozzi E; Vijayakumar N; Simmons JG
    Neuroimage; 2020 Jan; 204():116256. PubMed ID: 31605824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Height of normal pituitary gland as a function of age evaluated by magnetic resonance imaging in children.
    Argyropoulou M; Perignon F; Brunelle F; Brauner R; Rappaport R
    Pediatr Radiol; 1991; 21(4):247-9. PubMed ID: 1870916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient Hyperintensity of the Infant Thyroid Gland on T1-Weighted MR Imaging: Correlation with Postnatal Age, Gestational Age, and Signal Intensity of the Pituitary Gland.
    Maki H; Nakagawa M; Kagaya R; Kumazawa S; Matsumoto K; Hatano M; Miyake Y; Sugihara W; Shibamoto Y
    AJNR Am J Neuroradiol; 2021 May; 42(5):955-960. PubMed ID: 33632737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetization transfer imaging of the pituitary: further insights into the nature of the posterior "bright spot".
    Holder CA; Elster AD
    J Comput Assist Tomogr; 1997; 21(2):171-4. PubMed ID: 9071281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of the pituitary gland in elderly subjects from magnetic resonance images: relationship to pituitary hormone secretion.
    Terano T; Seya A; Tamura Y; Yoshida S; Hirayama T
    Clin Endocrinol (Oxf); 1996 Sep; 45(3):273-9. PubMed ID: 8949564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological changes on MR imaging of the normal pituitary gland related to age and sex: main emphasis on pubescent females.
    Kato K; Saeki N; Yamaura A
    J Clin Neurosci; 2002 Jan; 9(1):53-6. PubMed ID: 11749018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pituitary height on magnetic resonance imaging observation of age and sex related changes.
    Ikram MF; Sajjad Z; Shokh I; Omair A
    J Pak Med Assoc; 2008 May; 58(5):261-5. PubMed ID: 18655404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic susceptibility artifact in spin-echo MR imaging of the pituitary gland.
    Sakurai K; Fujita N; Harada K; Kim SW; Nakanishi K; Kozuka T
    AJNR Am J Neuroradiol; 1992; 13(5):1301-8. PubMed ID: 1414819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.