BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 7486082)

  • 1. Effect of the inhibitor of nitric oxide synthase, NG-nitro-L-arginine methyl ester, on cerebral and myocardial blood flows during hypoxia in the awake dog.
    Audibert G; Saunier CG; Siat J; Hartemann D; Lambert J
    Anesth Analg; 1995 Nov; 81(5):945-51. PubMed ID: 7486082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia, alpha 2-adrenergic, and nitric oxide-dependent interactions on canine cerebral blood flow.
    McPherson RW; Koehler RC; Traystman RJ
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H476-82. PubMed ID: 7511347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelium-derived nitric oxide does not modulate metabolic coronary vasodilation induced by tachycardia in dogs.
    Katsuda Y; Egashira K; Akatsuka Y; Narishige T; Shimokawa H; Takeshita A
    J Cardiovasc Pharmacol; 1995 Sep; 26(3):437-44. PubMed ID: 8583786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dose-related effects of nitric oxide synthase inhibition on cerebral blood flow during isoflurane and pentobarbital anesthesia.
    Todd MM; Wu B; Warner DS; Maktabi M
    Anesthesiology; 1994 May; 80(5):1128-36. PubMed ID: 7517107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of chronic nitric oxide inhibition of coronary blood flow regulation: a study of the role of endogenous adenosine in anesthetized, open-chested dogs.
    Tayama S; Okumura K; Matsunaga T; Tsunoda R; Tabuchi T; Iwasa A; Yasue H
    Jpn Circ J; 1998 May; 62(5):371-8. PubMed ID: 9626906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of nitric oxide on fetal cardiovascular control during normoxia and acute hypoxia in 0.75 gestation sheep.
    Coumans AB; Garnier Y; Supçun S; Jensen A; Hasaart TH; Berger R
    J Soc Gynecol Investig; 2003 Jul; 10(5):275-82. PubMed ID: 12853088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide-dependent and -independent components of cerebrovasodilation elicited by hypercapnia.
    Iadecola C; Zhang F
    Am J Physiol; 1994 Feb; 266(2 Pt 2):R546-52. PubMed ID: 7511352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fetal cerebral and peripheral circulatory responses to hypoxia after nitric oxide synthase inhibition.
    Harris AP; Helou S; Gleason CA; Traystman RJ; Koehler RC
    Am J Physiol Regul Integr Comp Physiol; 2001 Aug; 281(2):R381-90. PubMed ID: 11448839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of nitric oxide in the elevation of cerebral blood flow induced by acetylcholine and anoxia in the turtle.
    Hylland P; Nilsson GE; Lutz PL
    J Cereb Blood Flow Metab; 1996 Mar; 16(2):290-5. PubMed ID: 8594061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamic effects of nitric oxide synthase inhibition before and after cardiac arrest in infant piglets.
    Schleien CL; Kuluz JW; Gelman B
    Am J Physiol; 1998 Apr; 274(4):H1378-85. PubMed ID: 9575943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebrovascular consequences of repeated exposure to NG-nitro-L-arginine methyl ester.
    Kelly PA; Ritchie IM; Collins FM
    Br J Pharmacol; 1995 Nov; 116(6):2771-7. PubMed ID: 8591003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral metabolic recovery from deep hypothermic circulatory arrest after treatment with arginine and nitro-arginine methyl ester.
    Hiramatsu T; Jonas RA; Miura T; duPlessis A; Tanji M; Forbess JM; Holtzman D
    J Thorac Cardiovasc Surg; 1996 Sep; 112(3):698-707. PubMed ID: 8800158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral blood flow in primates is increased by isoflurane over time and is decreased by nitric oxide synthase inhibition.
    McPherson RW; Kirsch JR; Tobin JR; Ghaly RF; Traystman RJ
    Anesthesiology; 1994 Jun; 80(6):1320-7. PubMed ID: 7516627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of H2-receptor blockers on response of cerebral blood flow to normocapnic hypoxia.
    Audibert G; Saunier C; Hartemann D; Bigard O; Haberer JP
    Anesth Analg; 1991 Apr; 72(4):532-7. PubMed ID: 1672490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of nitric oxide, adenosine, N-methyl-D-aspartate receptors, and neuronal activation in hypoxia-induced pial arteriolar dilation in rats.
    Pelligrino DA; Wang Q; Koenig HM; Albrecht RF
    Brain Res; 1995 Dec; 704(1):61-70. PubMed ID: 8750962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of nitric oxide to coronary vasodilation during hypercapnic acidosis.
    Gurevicius J; Salem MR; Metwally AA; Silver JM; Crystal GJ
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H39-47. PubMed ID: 7530920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NO contributes to neurohypophysial but not other regional cerebral fluorocarbon-induced hyperemia in cats.
    Wagner BP; Stingele R; Williams MA; Wilson DA; Traystman RJ; Hanley DF
    Am J Physiol; 1997 Oct; 273(4):H1994-2000. PubMed ID: 9362271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of nitric oxide synthase does not affect alpha 2-adrenergic-mediated cerebral vasoconstriction.
    McPherson RW; Kirsch JR; Traystman RJ
    Anesth Analg; 1994 Jan; 78(1):67-72. PubMed ID: 7505532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of NG-nitro-L-arginine methyl ester on the cardiovascular system of the anaesthetized rabbit and on the cardiovascular response to thyrotropin-releasing hormone.
    Seligsohn EE; Bill A
    Br J Pharmacol; 1993 Aug; 109(4):1219-25. PubMed ID: 8401932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of nitric oxide synthesis by NG-nitro-L-arginine methyl ester (L-NAME): requirement for bioactivation to the free acid, NG-nitro-L-arginine.
    Pfeiffer S; Leopold E; Schmidt K; Brunner F; Mayer B
    Br J Pharmacol; 1996 Jul; 118(6):1433-40. PubMed ID: 8832069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.