These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 7486347)

  • 21. Quantitation of human shoulder anatomy for prosthetic arm control--II. Anatomy matrices.
    Wood JE; Meek SG; Jacobsen SC
    J Biomech; 1989; 22(4):309-25. PubMed ID: 2745465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model of the cerebellar pathways applied to the control of a single-joint robot arm actuated by McKibben artificial muscles.
    Eskiizmirliler S; Forestier N; Tondu B; Darlot C
    Biol Cybern; 2002 May; 86(5):379-94. PubMed ID: 11984652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of a myoelectric arm considering cooperated motion of elbow and shoulder joints.
    Kiguchi K; Hayashi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1616-9. PubMed ID: 22254632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Incomplete posture adjustment during rapid arm movement.
    Yamasaki H; Fujisawa H; Hoshi F; Nagasaki H
    Percept Mot Skills; 2009 Jun; 108(3):915-32. PubMed ID: 19725326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inter-joint coupling strategy during adaptation to novel viscous loads in human arm movement.
    Debicki DB; Gribble PL
    J Neurophysiol; 2004 Aug; 92(2):754-65. PubMed ID: 15056688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer simulation of the dynamics of a human arm and orthosis linkage mechanism.
    Buckley MA; Johnson GR
    Proc Inst Mech Eng H; 1997; 211(5):349-57. PubMed ID: 9427830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laboratory evaluation of a unified theory for simultaneous multiple axis artificial arm control.
    Jerard RB; Jacobsen SC
    J Biomech Eng; 1980 Aug; 102(3):199. PubMed ID: 19530801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning to control arm stiffness under static conditions.
    Darainy M; Malfait N; Gribble PL; Towhidkhah F; Ostry DJ
    J Neurophysiol; 2004 Dec; 92(6):3344-50. PubMed ID: 15282262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electromyographic responses to a mechanical perturbation applied during impending arm movements in different directions: one-joint and two-joint conditions.
    Koshland GF; Hasan Z
    Exp Brain Res; 2000 Jun; 132(4):485-99. PubMed ID: 10912829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement.
    Gomi H; Kawato
    Science; 1996 Apr; 272(5258):117-20. PubMed ID: 8600521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of operational comfort in manual tasks using human force manipulability measure.
    Tanaka Y; Nishikawa K; Yamada N; Tsuji T
    IEEE Trans Haptics; 2015; 8(1):8-19. PubMed ID: 25415990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental Characterization of NURSE, a Device for Arm Motion Guidance.
    Chaparro-Rico BDM; Cafolla D; Ceccarelli M; Castillo-Castaneda E
    J Healthc Eng; 2018; 2018():9303282. PubMed ID: 30057735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multijoint movement control in Parkinson's disease.
    Seidler RD; Alberts JL; Stelmach GE
    Exp Brain Res; 2001 Oct; 140(3):335-44. PubMed ID: 11681309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Postural coordination patterns associated with the swinging frequency of arms.
    Abe M; Yamada N
    Exp Brain Res; 2001 Jul; 139(1):120-5. PubMed ID: 11482839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of a biped robot actuated by pneumatic artificial muscles.
    Liu Y; Zang X; Liu X; Wang L
    Biomed Mater Eng; 2015; 26 Suppl 1():S757-66. PubMed ID: 26406072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A behavior-based inverse kinematics algorithm to predict arm prehension postures for computer-aided ergonomic evaluation.
    Wang X
    J Biomech; 1999 May; 32(5):453-60. PubMed ID: 10326998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A neural network model for reconstructing EMG signals from eight shoulder muscles: consequences for rehabilitation robotics and biofeedback.
    Matheson Rittenhouse D; Abdullah HA; John Runciman R; Basir O
    J Biomech; 2006; 39(10):1924-32. PubMed ID: 15993412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Freeze clamping musculo-tendinous junctions for in vitro simulation of joint mechanics.
    Sharkey NA; Smith TS; Lundmark DC
    J Biomech; 1995 May; 28(5):631-5. PubMed ID: 7775499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of geometric joint constraints on the selection of final arm posture during reaching: a simulation study.
    Kamper DG; Zev Rymer W
    Exp Brain Res; 1999 May; 126(1):134-8. PubMed ID: 10333014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.