These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 748681)
1. Resistance of the intact and reconstituted adipocyte hexose transport system to irreversible inhibition by sulfhydryl and amino reagents. Czech MP; Pillion DJ; Shanahan MF J Supramol Struct; 1978; 9(3):363-71. PubMed ID: 748681 [TBL] [Abstract][Full Text] [Related]
2. Retention of insulin-stimulated D-glucose transport activity by adipocyte plasma membranes following extraction of extrinsic proteins. Pillion DJ; Shanahan MF; Czech MP J Supramol Struct; 1978; 8(3):269-77. PubMed ID: 723265 [TBL] [Abstract][Full Text] [Related]
3. Involvement of membrane sulfhydryls in the activation and maintenance of nutrient transport in chick embryo fibroblasts. Smith-Johannsen H; Perdue JF; Ramjeesingh M; Kahlenberg A J Supramol Struct; 1977; 7(1):37-48. PubMed ID: 564429 [TBL] [Abstract][Full Text] [Related]
4. Current status of the thiol redox model for the regulation of hexose transport by insulin. Czech MP J Cell Physiol; 1976 Dec; 89(4):661-8. PubMed ID: 1034635 [TBL] [Abstract][Full Text] [Related]
5. Hexose transport in L6 rat myoblasts. II. The effects of sulfhydryl reagents. D'Amore T; Lo TC J Cell Physiol; 1986 Apr; 127(1):106-13. PubMed ID: 3007535 [TBL] [Abstract][Full Text] [Related]
6. The effects of sulfhydryl modifying reagents on nonhormonal and hormonally regulated hexose transport in cultured human skin fibroblasts. Germinario RJ; Vlachopoulou F J Cell Physiol; 1987 Feb; 130(2):214-20. PubMed ID: 3546339 [TBL] [Abstract][Full Text] [Related]
7. Effect of sulfhydryl reagents on tetraethylammonium transport in rat renal brush border membranes. Hori R; Maegawa H; Okano T; Takano M; Inui K J Pharmacol Exp Ther; 1987 Jun; 241(3):1010-6. PubMed ID: 3037062 [TBL] [Abstract][Full Text] [Related]
8. Inhibitors of protein synthesis cause increased hexose transport in cultured human fibroblasts by a mechanism other than transporter translocation. Germinario RJ; Manuel S; Chang Z; Leckett B J Cell Physiol; 1992 Apr; 151(1):156-63. PubMed ID: 1560041 [TBL] [Abstract][Full Text] [Related]
9. Divergent mechanisms for the insulin resistant and hyperresponsive glucose transport in adipose cells from fasted and refed rats. Alterations in both glucose transporter number and intrinsic activity. Kahn BB; Simpson IA; Cushman SW J Clin Invest; 1988 Aug; 82(2):691-9. PubMed ID: 3403723 [TBL] [Abstract][Full Text] [Related]
10. Genistein inhibits insulin-stimulated glucose transport and decreases immunocytochemical labeling of GLUT4 carboxyl-terminus without affecting translocation of GLUT4 in isolated rat adipocytes: additional evidence of GLUT4 activation by insulin. Smith RM; Tiesinga JJ; Shah N; Smith JA; Jarett L Arch Biochem Biophys; 1993 Jan; 300(1):238-46. PubMed ID: 8424658 [TBL] [Abstract][Full Text] [Related]
11. Forskolin inhibits insulin-stimulated glucose transport in rat adipose cells by a direct interaction with the glucose transporter. Joost HG; Steinfelder HJ Mol Pharmacol; 1987 Mar; 31(3):279-83. PubMed ID: 3470598 [TBL] [Abstract][Full Text] [Related]
12. Sulfhydryl substituents of the human erythrocyte hexose transport mechanism. Abbott RE; Schachter D; Batt ER; Flamm M Am J Physiol; 1986 Jun; 250(6 Pt 1):C853-60. PubMed ID: 3717328 [TBL] [Abstract][Full Text] [Related]
13. Complex effects of sulfhydryl reagents on ligand interactions with nucleoside transporters: evidence for multiple populations of ENT1 transporters with differential sensitivities to N-ethylmaleimide. Vyas S; Ahmadi B; Hammond JR Arch Biochem Biophys; 2002 Jul; 403(1):92-102. PubMed ID: 12061806 [TBL] [Abstract][Full Text] [Related]
14. Isolation and characterization of hexose transport mutants in L6 rat myoblasts. D'Amore T; Duronio V; Cheung MO; Lo TC J Cell Physiol; 1986 Jan; 126(1):29-36. PubMed ID: 3944196 [TBL] [Abstract][Full Text] [Related]
15. System A transport activity in normal rat hepatocytes and transformed liver cells: substrate protection from inactivation by sulfhydryl-modifying reagents. Chiles TC; Kilberg MS J Cell Physiol; 1986 Dec; 129(3):321-8. PubMed ID: 3023402 [TBL] [Abstract][Full Text] [Related]
16. A comparison of basal and insulin-stimulated glucose transport in rat adipocyte plasma membranes. Ludvigsen C; Jarett L Diabetes; 1980 May; 29(5):373-8. PubMed ID: 6991329 [TBL] [Abstract][Full Text] [Related]
17. Differential effects of sulfhydryl reagents on activation and deactivation of the fat cell hexose transport system. Czech MP J Biol Chem; 1976 Feb; 251(4):1164-70. PubMed ID: 1249070 [TBL] [Abstract][Full Text] [Related]
18. Characterization of (3H)cytochalasin B binding to the fat cell plasma membrane. Czech MP J Biol Chem; 1976 May; 251(10):2905-10. PubMed ID: 818083 [TBL] [Abstract][Full Text] [Related]
19. Insulin stimulation of glucose transport in isolated rat adipocytes. Functional evidence for insulin activation of intrinsic transporter activity within the plasma membrane. Hyslop PA; Kuhn CE; Sauerheber RD Biochem J; 1985 Nov; 232(1):245-54. PubMed ID: 3910027 [TBL] [Abstract][Full Text] [Related]
20. Hexose transport regulation in cultured hamster cells. Christopher CW J Supramol Struct; 1977; 6(4):485-94. PubMed ID: 563495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]