These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 7487017)

  • 21. Nitrate and nitrite reductase negative mutants of N2-fixing Azospirillum spp.
    Magalhães LM; Neyra CA; Döbereiner J
    Arch Microbiol; 1978 Jun; 117(3):247-52. PubMed ID: 697499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological roles for two periplasmic nitrate reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025).
    Hartsock A; Shapleigh JP
    J Bacteriol; 2011 Dec; 193(23):6483-9. PubMed ID: 21949073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Denitrification.
    Knowles R
    Microbiol Rev; 1982 Mar; 46(1):43-70. PubMed ID: 7045624
    [No Abstract]   [Full Text] [Related]  

  • 24. Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus).
    Polcyn W; Luciński R
    FEMS Microbiol Lett; 2003 Sep; 226(2):331-7. PubMed ID: 14553930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Denitrification and its control.
    Ferguson SJ
    Antonie Van Leeuwenhoek; 1994; 66(1-3):89-110. PubMed ID: 7747942
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of nirS expression (cytochrome cd1 nitrite reductase) in Pseudomonas stutzeri during the transition from aerobic respiration to denitrification: evidence for a denitrification-specific nitrate- and nitrite-responsive regulatory system.
    Härtig E; Zumft WG
    J Bacteriol; 1999 Jan; 181(1):161-6. PubMed ID: 9864326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria.
    Paulo AMS; Aydin R; Dimitrov MR; Vreeling H; Cavaleiro AJ; García-Encina PA; Stams AJM; Plugge CM
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5163-5173. PubMed ID: 28299401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and application of a novel and effective screening method for aerobic denitrifying bacteria.
    Kong QX; Wang XW; Jin M; Shen ZQ; Li JW
    FEMS Microbiol Lett; 2006 Jul; 260(2):150-5. PubMed ID: 16842338
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth yield of a denitrifying bacterium, Pseudomonas denitrificans, under aerobic and denitrifying conditions.
    Koike I; Hattori A
    J Gen Microbiol; 1975 May; 88(1):1-10. PubMed ID: 1151326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of NO
    Heo H; Kwon M; Song B; Yoon S
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32631862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The enzymes associated with denitrification.
    Hochstein LI; Tomlinson GA
    Annu Rev Microbiol; 1988; 42():231-61. PubMed ID: 11536625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and characterisation of a strain of Pseudomonas putida that can express a periplasmic nitrate reductase.
    Carter JP; Richardson DJ; Spiro S
    Arch Microbiol; 1995 Mar; 163(3):159-66. PubMed ID: 7778973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple model for diauxic growth of denitrifying bacteria.
    Casasús AI; Hamilton RK; Svoronos SA; Koopman B
    Water Res; 2005 May; 39(9):1914-20. PubMed ID: 15899290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disruption of narG, the gene encoding the catalytic subunit of respiratory nitrate reductase, also affects nitrite respiration in Pseudomonas fluorescens YT101.
    Ghiglione JF; Philippot L; Normand P; Lensi R; Potier P
    J Bacteriol; 1999 Aug; 181(16):5099-102. PubMed ID: 10438786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Denitrification is a common feature among members of the genus Bacillus.
    Verbaendert I; Boon N; De Vos P; Heylen K
    Syst Appl Microbiol; 2011 Jul; 34(5):385-91. PubMed ID: 21530125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation?
    Cole J
    FEMS Microbiol Lett; 1996 Feb; 136(1):1-11. PubMed ID: 8919448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrate and (per)chlorate reduction pathways in (per)chlorate-reducing bacteria.
    Oosterkamp MJ; Mehboob F; Schraa G; Plugge CM; Stams AJ
    Biochem Soc Trans; 2011 Jan; 39(1):230-5. PubMed ID: 21265779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterotrophic nitrification and aerobic denitrification in Alcaligenes faecalis strain TUD.
    van Niel EW; Braber KJ; Robertson LA; Kuenen JG
    Antonie Van Leeuwenhoek; 1992 Oct; 62(3):231-7. PubMed ID: 1416919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Denitrifying Pseudomonas aeruginosa: some parameters of growth and active transport.
    Williams DR; Rowe JJ; Romero P; Eagon RG
    Appl Environ Microbiol; 1978 Aug; 36(2):257-63. PubMed ID: 100056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.