These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 7487058)
1. Macrophages require both iron and copper to oxidize low-density lipoprotein in Hanks' balanced salt solution. Kritharides L; Jessup W; Dean RT Arch Biochem Biophys; 1995 Oct; 323(1):127-36. PubMed ID: 7487058 [TBL] [Abstract][Full Text] [Related]
2. Human suction blister interstitial fluid prevents metal ion-dependent oxidation of low density lipoprotein by macrophages and in cell-free systems. Dabbagh AJ; Frei B J Clin Invest; 1995 Oct; 96(4):1958-66. PubMed ID: 7560088 [TBL] [Abstract][Full Text] [Related]
3. Effect of bicarbonate on iron-mediated oxidation of low-density lipoprotein. Arai H; Berlett BS; Chock PB; Stadtman ER Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10472-7. PubMed ID: 16027354 [TBL] [Abstract][Full Text] [Related]
4. Oxidation of low density lipoprotein by iron or copper at acidic pH. Morgan J; Leake DS J Lipid Res; 1995 Dec; 36(12):2504-12. PubMed ID: 8847477 [TBL] [Abstract][Full Text] [Related]
5. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Burkitt MJ Arch Biochem Biophys; 2001 Oct; 394(1):117-35. PubMed ID: 11566034 [TBL] [Abstract][Full Text] [Related]
6. Redistribution of metal ions to control low density lipoprotein oxidation in Ham's F10 medium. Firth CA; Gieseg SP Free Radic Res; 2007 Oct; 41(10):1109-15. PubMed ID: 17886032 [TBL] [Abstract][Full Text] [Related]
7. Low density lipoprotein undergoes oxidation within lysosomes in cells. Wen Y; Leake DS Circ Res; 2007 May; 100(9):1337-43. PubMed ID: 17446432 [TBL] [Abstract][Full Text] [Related]
8. A method for defining the stages of low-density lipoprotein oxidation by the separation of cholesterol- and cholesteryl ester-oxidation products using HPLC. Kritharides L; Jessup W; Gifford J; Dean RT Anal Biochem; 1993 Aug; 213(1):79-89. PubMed ID: 8238886 [TBL] [Abstract][Full Text] [Related]
9. Cell-induced copper ion-mediated low density lipoprotein oxidation increases during in vivo monocyte-to-macrophage differentiation. Fuhrman B; Shiner M; Volkova N; Aviram M Free Radic Biol Med; 2004 Jul; 37(2):259-71. PubMed ID: 15203197 [TBL] [Abstract][Full Text] [Related]
10. Direct copper reduction by macrophages. Its role in low density lipoprotein oxidation. Garner B; van Reyk D; Dean RT; Jessup W J Biol Chem; 1997 Mar; 272(11):6927-35. PubMed ID: 9054380 [TBL] [Abstract][Full Text] [Related]
11. Modification of copper-catalyzed oxidation of low density lipoprotein by proteoglycans and glycosaminoglycans. Camejo G; Hurt-Camejo E; Rosengren B; Wiklund O; López F; Bondjers G J Lipid Res; 1991 Dec; 32(12):1983-91. PubMed ID: 1816326 [TBL] [Abstract][Full Text] [Related]
12. Prooxidant and antioxidant activities of macrophages in metal-mediated LDL oxidation: the importance of metal sequestration. van Reyk DM; Jessup W; Dean RT Arterioscler Thromb Vasc Biol; 1999 Apr; 19(4):1119-24. PubMed ID: 10195944 [TBL] [Abstract][Full Text] [Related]
13. NADPH oxidase is not essential for low density lipoprotein oxidation by human monocyte-derived macrophages. Wilkins GM; Segal AW; Leake DS Biochem Biophys Res Commun; 1994 Aug; 202(3):1300-7. PubMed ID: 8060307 [TBL] [Abstract][Full Text] [Related]
14. Alpha-tocopherol supplementation of macrophages does not influence their ability to oxidize LDL. Baoutina A; Dean RT; Jessup W J Lipid Res; 1998 Jan; 39(1):114-30. PubMed ID: 9469591 [TBL] [Abstract][Full Text] [Related]
15. Physiological thiol compounds exert pro- and anti-oxidant effects, respectively, on iron- and copper-dependent oxidation of human low-density lipoprotein. Lynch SM; Frei B Biochim Biophys Acta; 1997 Apr; 1345(2):215-21. PubMed ID: 9106501 [TBL] [Abstract][Full Text] [Related]
16. Human (THP-1) macrophages oxidize LDL by a thiol-dependent mechanism. Graham A; Wood JL; O'Leary VJ; Stone D Free Radic Res; 1996 Aug; 25(2):181-92. PubMed ID: 8885336 [TBL] [Abstract][Full Text] [Related]
17. Human (THP-1) macrophages oxidize LDL by a thiol-dependent mechanism. Graham A; Wood JL; O'Leary VJ; Stone D Free Radic Res; 1994 Oct; 21(5):295-308. PubMed ID: 7842139 [TBL] [Abstract][Full Text] [Related]
18. Reduction of copper, but not iron, by human low density lipoprotein (LDL). Implications for metal ion-dependent oxidative modification of LDL. Lynch SM; Frei B J Biol Chem; 1995 Mar; 270(10):5158-63. PubMed ID: 7890625 [TBL] [Abstract][Full Text] [Related]
19. Carvedilol, a new antihypertensive, prevents oxidation of human low density lipoprotein by macrophages and copper. Yue TL; McKenna PJ; Lysko PG; Ruffolo RR; Feuerstein GZ Atherosclerosis; 1992 Dec; 97(2-3):209-16. PubMed ID: 1361324 [TBL] [Abstract][Full Text] [Related]
20. The oxidative modification of low-density lipoproteins by macrophages. Leake DS; Rankin SM Biochem J; 1990 Sep; 270(3):741-8. PubMed ID: 2122885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]