These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7487058)

  • 41. Ascorbate is particularly effective against LDL oxidation in the presence of iron(III) and homocysteine/cystine at acidic pH.
    Pfanzagl B
    Biochim Biophys Acta; 2005 Oct; 1736(3):237-43. PubMed ID: 16169276
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cellular thiol production and oxidation of low-density lipoprotein.
    Graham A
    Free Radic Res; 1998 Jun; 28(6):611-21. PubMed ID: 9736313
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Iron-catalyzed oxidation of Trp residues in low-density lipoprotein.
    Chen HH; Chen CY; Chow LP; Chen CH; Lee YT; Smith CV; Yang CY
    Biol Chem; 2011 Oct; 392(10):859-67. PubMed ID: 21848505
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Involvement of endotoxins or tumor necrosis factor-alpha in macrophage-mediated oxidation of low density lipoprotein.
    Fujiwara K; Sato H; Bannai S
    FEBS Lett; 1998 Jul; 431(1):116-20. PubMed ID: 9684877
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lipolysis-induced iron release from diferric transferrin: Possible role of lipoprotein lipase in LDL oxidation.
    Balagopalakrishna C; Paka L; Pillarisetti S; Goldberg IJ
    J Lipid Res; 1999 Jul; 40(7):1347-56. PubMed ID: 10393220
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of iron- and hemoglobin-loaded human monocyte-derived macrophages on oxidation and uptake of LDL.
    Yuan XM; Brunk UT; Olsson AG
    Arterioscler Thromb Vasc Biol; 1995 Sep; 15(9):1345-51. PubMed ID: 7670948
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human serum, cysteine and histidine inhibit the oxidation of low density lipoprotein less at acidic pH.
    Patterson RA; Leake DS
    FEBS Lett; 1998 Sep; 434(3):317-21. PubMed ID: 9742946
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oxidation of low-density lipoprotein by iron at lysosomal pH: implications for atherosclerosis.
    Satchell L; Leake DS
    Biochemistry; 2012 May; 51(18):3767-75. PubMed ID: 22493939
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Low density lipoprotein oxidation by ferritin at lysosomal pH.
    Ojo OO; Leake DS
    Chem Phys Lipids; 2018 Dec; 217():51-57. PubMed ID: 30287220
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Does an acidic pH explain why low density lipoprotein is oxidised in atherosclerotic lesions?
    Leake DS
    Atherosclerosis; 1997 Mar; 129(2):149-57. PubMed ID: 9105556
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of glucose-mediated LDL oxidation on the P388D1 macrophage-like cell line.
    Millican SA; Bagga M; Eddy R; Mitchinson MJ; Hunt JV
    Atherosclerosis; 1997 Feb; 129(1):17-25. PubMed ID: 9069512
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Iron released from transferrin at acidic pH can catalyse the oxidation of low density lipoprotein.
    Lamb DJ; Leake DS
    FEBS Lett; 1994 Sep; 352(1):15-8. PubMed ID: 7925932
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acidic pH enables caeruloplasmin to catalyse the modification of low-density lipoprotein.
    Lamb DJ; Leake DS
    FEBS Lett; 1994 Jan; 338(2):122-6. PubMed ID: 8307168
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glutathione (GSH) and the toxicity of oxidised low-density lipoprotein to human monocyte-macrophages.
    Hardwick SJ; Carpenter KL; Allen EA; Mitchinson MJ
    Free Radic Res; 1999 Jan; 30(1):11-9. PubMed ID: 10193569
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Factors affecting events during oxidation of low density lipoprotein: correlation of multiple parameters of oxidation.
    van der Veen C; Carpenter KL; Taylor SE; McDonald JA; Mitchinson MJ
    Free Radic Res; 1997 Nov; 27(5):459-76. PubMed ID: 9518063
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel cell culture medium for use in oxidation experiments provides insights into mechanisms of endothelial cell-mediated oxidation of LDL.
    Dugas TR; Morel DW; Harrison EH
    In Vitro Cell Dev Biol Anim; 2000 Oct; 36(9):571-7. PubMed ID: 11212142
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Iron and LDL-oxidation in atherogenesis.
    Yuan XM; Brunk UT
    APMIS; 1998 Sep; 106(9):825-42. PubMed ID: 9808409
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cellular cysteine generation does not contribute to the initiation of LDL oxidation.
    Santanam N; Parthasarathy S
    J Lipid Res; 1995 Oct; 36(10):2203-11. PubMed ID: 8576646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metal ion release from mechanically-disrupted human arterial wall. Implications for the development of atherosclerosis.
    Evans PJ; Smith C; Mitchinson MJ; Halliwell B
    Free Radic Res; 1995 Nov; 23(5):465-9. PubMed ID: 7581829
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of reagent and cell-generated hydrogen peroxide on the properties of low density lipoprotein.
    Montgomery RR; Nathan CF; Cohn ZA
    Proc Natl Acad Sci U S A; 1986 Sep; 83(17):6631-5. PubMed ID: 3018740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.