These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7487058)

  • 61. Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages.
    Rankin SM; Parthasarathy S; Steinberg D
    J Lipid Res; 1991 Mar; 32(3):449-56. PubMed ID: 1906087
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Peroxidase-dependent metal-independent oxidation of low density lipoprotein in vitro: a model for in vivo oxidation?
    Wieland E; Parthasarathy S; Steinberg D
    Proc Natl Acad Sci U S A; 1993 Jul; 90(13):5929-33. PubMed ID: 8327462
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ceruloplasmin and cardiovascular disease.
    Fox PL; Mazumder B; Ehrenwald E; Mukhopadhyay CK
    Free Radic Biol Med; 2000 Jun; 28(12):1735-44. PubMed ID: 10946215
    [TBL] [Abstract][Full Text] [Related]  

  • 64. LDL oxidation by activated monocytes: characterization of the oxidized LDL and requirement for transition metal ions.
    Xing X; Baffic J; Sparrow CP
    J Lipid Res; 1998 Nov; 39(11):2201-8. PubMed ID: 9799806
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Effect of cytochrome P-450 inhibitors on oxidative modification of low-density lipoproproteins by macrophages].
    Dushkin MI; Zenkov NK; Men'shikova EB; Pivovarova EN; Liubimov GIu; Vol'skiĭ NN
    Vopr Med Khim; 1996; 42(1):23-30. PubMed ID: 8783470
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Reduction of transition metals by human (THP-1) monocytes is enhanced by activators of protein kinase C.
    Wood JL; Graham A
    Free Radic Res; 1999 Nov; 31(5):367-79. PubMed ID: 10547182
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Free radicals and low-density lipoprotein oxidation by macrophages.
    Wilkins GM; Leake DS
    Biochem Soc Trans; 1990 Dec; 18(6):1170-1. PubMed ID: 2088841
    [No Abstract]   [Full Text] [Related]  

  • 68. Cellular modification of low-density lipoproteins.
    Jessup W
    Biochem Soc Trans; 1993 May; 21(2):321-5. PubMed ID: 8395424
    [No Abstract]   [Full Text] [Related]  

  • 69. Ascorbic acid oxidation: a potential cause of the elevated severity of atherosclerosis in diabetes mellitus?
    Hunt JV; Bottoms MA; Mitchinson MJ
    FEBS Lett; 1992 Oct; 311(2):161-4. PubMed ID: 1397304
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Initiation of LDL oxidation by copper ions or AAPH yields different kinetic parameters which are correlated.
    Leonhardt W; Bergmann R; Hanefeld M
    Clin Chim Acta; 1997 Mar; 259(1-2):195-7. PubMed ID: 9086309
    [No Abstract]   [Full Text] [Related]  

  • 71. [Attempts at reduction of corrosion from the effect of diluted peracetic acid on iron, copper, brass and bronze by adding phosphates].
    Mücke H
    Pharmazie; 1975 Apr; 30(4):238-40. PubMed ID: 1153490
    [No Abstract]   [Full Text] [Related]  

  • 72. CD4-positive T-lymphocytes can oxidatively modify low density lipoprotein.
    Lamb DJ; Leake DS
    Biochem Soc Trans; 1993 May; 21(2):132S. PubMed ID: 8103001
    [No Abstract]   [Full Text] [Related]  

  • 73. Metabolic crossroads of iron and copper.
    Collins JF; Prohaska JR; Knutson MD
    Nutr Rev; 2010 Mar; 68(3):133-47. PubMed ID: 20384844
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Demonstration of acid mucopolysaccharides by benzidine reactions.
    Kovács L; Török LJ
    Acta Biol Acad Sci Hung; 1969; 20(2):241-5. PubMed ID: 4188207
    [No Abstract]   [Full Text] [Related]  

  • 75. Iron, Copper, and Selenium: Cancer's Thing for Redox Bling.
    Terzi EM; Possemato R
    Cold Spring Harb Perspect Med; 2024 Apr; 14(4):. PubMed ID: 37932129
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Copper and iron homeostasis in mammalian cells and cell lines.
    Ward RJ; Scarino ML; Leone A; Crichton RR; McArdle HJ
    Biochem Soc Trans; 1998 May; 26(2):S191. PubMed ID: 9649866
    [No Abstract]   [Full Text] [Related]  

  • 77. Low-Pressure Microwave Plasma Reduction of Iron and Copper Salt Compounds at Low Temperatures for Oxidation State Alteration and Functional Applications.
    Weber M; Scheglov A; Dörries W; Meyer JB; Viöl W
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110056
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Raw Material Specification, Hanks' Balanced Salt Solution, Sterile.
    ;
    CellR4 Repair Replace Regen Reprogram; 2016; 4(3):. PubMed ID: 30613725
    [No Abstract]   [Full Text] [Related]  

  • 79. Oxygen formation in the gamma-ray irradiation of Fe2+-Cu2+ solutions.
    Bjergbakke E; Hart EJ
    Radiat Res; 1971 Feb; 45(2):261-73. PubMed ID: 5543511
    [No Abstract]   [Full Text] [Related]  

  • 80. Oxidation of S(IV) in Atmospheric Water by Photooxidants and Iron in the Presence of Copper.
    Sedlak DL; Hoigne J
    Environ Sci Technol; 1994 Oct; 28(11):1898-906. PubMed ID: 22175931
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.