BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 7487067)

  • 21. Biotin synthesis in higher plants: isolation of a cDNA encoding Arabidopsis thaliana bioB-gene product equivalent by functional complementation of a biotin auxotroph mutant bioB105 of Escherichia coli K12.
    Baldet P; Ruffet ML
    C R Acad Sci III; 1996 Feb; 319(2):99-106. PubMed ID: 8680961
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complex formation between recombinant ATP sulfurylase and APS reductase of Allium cepa (L.).
    Cumming M; Leung S; McCallum J; McManus MT
    FEBS Lett; 2007 Sep; 581(22):4139-47. PubMed ID: 17692849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular basis for G protein control of the prokaryotic ATP sulfurylase.
    Mougous JD; Lee DH; Hubbard SC; Schelle MW; Vocadlo DJ; Berger JM; Bertozzi CR
    Mol Cell; 2006 Jan; 21(1):109-22. PubMed ID: 16387658
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rhizobium meliloti NodP and NodQ form a multifunctional sulfate-activating complex requiring GTP for activity.
    Schwedock JS; Liu C; Leyh TS; Long SR
    J Bacteriol; 1994 Nov; 176(22):7055-64. PubMed ID: 7961471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural, biochemical and genetic characterization of dissimilatory ATP sulfurylase from Allochromatium vinosum.
    Parey K; Demmer U; Warkentin E; Wynen A; Ermler U; Dahl C
    PLoS One; 2013; 8(9):e74707. PubMed ID: 24073218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of sulfate concentration by miR395-targeted
    Ai Q; Liang G; Zhang H; Yu D
    Plant Divers; 2016 Apr; 38(2):92-100. PubMed ID: 30159453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional expression of uridine 5'-diphospho-glucose 4-epimerase (EC 5.1.3.2) from Arabidopsis thaliana in Saccharomyces cerevisiae and Escherichia coli.
    Dörmann P; Benning C
    Arch Biochem Biophys; 1996 Mar; 327(1):27-34. PubMed ID: 8615692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The isolation and characterization of cDNA encoding the mouse bifunctional ATP sulfurylase-adenosine 5'-phosphosulfate kinase.
    Li H; Deyrup A; Mensch JR; Domowicz M; Konstantinidis AK; Schwartz NB
    J Biol Chem; 1995 Dec; 270(49):29453-9. PubMed ID: 7493984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-beta-ocimene synthase.
    Bohlmann J; Martin D; Oldham NJ; Gershenzon J
    Arch Biochem Biophys; 2000 Mar; 375(2):261-9. PubMed ID: 10700382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning, expression, and purification of cytidine deaminase from Arabidopsis thaliana.
    Vincenzetti S; Cambi A; Neuhard J; Schnorr K; Grelloni M; Vita A
    Protein Expr Purif; 1999 Feb; 15(1):8-15. PubMed ID: 10024464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and "APS reductase" activity.
    Gutierrez-Marcos JF; Roberts MA; Campbell EI; Wray JL
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13377-82. PubMed ID: 8917599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana.
    Yatusevich R; Mugford SG; Matthewman C; Gigolashvili T; Frerigmann H; Delaney S; Koprivova A; Flügge UI; Kopriva S
    Plant J; 2010 Apr; 62(1):1-11. PubMed ID: 20042022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases.
    Sperling D; Kappler U; Wynen A; Dahl C; Trüper HG
    FEMS Microbiol Lett; 1998 May; 162(2):257-64. PubMed ID: 9627961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and mechanism of soybean ATP sulfurylase and the committed step in plant sulfur assimilation.
    Herrmann J; Ravilious GE; McKinney SE; Westfall CS; Lee SG; Baraniecka P; Giovannetti M; Kopriva S; Krishnan HB; Jez JM
    J Biol Chem; 2014 Apr; 289(15):10919-10929. PubMed ID: 24584934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfur availability and the SAC1 gene control adenosine triphosphate sulfurylase gene expression in Chlamydomonas reinhardtii.
    Yildiz FH; Davies JP; Grossman A
    Plant Physiol; 1996 Oct; 112(2):669-75. PubMed ID: 8883379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GTPase-mediated activation of ATP sulfurylase.
    Leyh TS; Suo Y
    J Biol Chem; 1992 Jan; 267(1):542-5. PubMed ID: 1730615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of ATP sulfurylase from Saccharomyces cerevisiae, a key enzyme in sulfate activation.
    Ullrich TC; Blaesse M; Huber R
    EMBO J; 2001 Feb; 20(3):316-29. PubMed ID: 11157739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deletion and site-directed mutagenesis of the ATP-binding motif (P-loop) in the bifunctional murine ATP-sulfurylase/adenosine 5'-phosphosulfate kinase enzyme.
    Deyrup AT; Krishnan S; Cockburn BN; Schwartz NB
    J Biol Chem; 1998 Apr; 273(16):9450-6. PubMed ID: 9545271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATP sulfurylase from trophosome tissue of Riftia pachyptila (hydrothermal vent tube worm).
    Renosto F; Martin RL; Borrell JL; Nelson DC; Segel IH
    Arch Biochem Biophys; 1991 Oct; 290(1):66-78. PubMed ID: 1898101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloning of a cDNA encoded by a member of the Arabidopsis thaliana ATP sulfurylase multigene family. Expression studies in yeast and in relation to plant sulfur nutrition.
    Logan HM; Cathala N; Grignon C; Davidian JC
    J Biol Chem; 1996 May; 271(21):12227-33. PubMed ID: 8647819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.