BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 7487097)

  • 1. Ubiquinone-dependent recycling of vitamin E radicals by superoxide.
    Stoyanovsky DA; Osipov AN; Quinn PJ; Kagan VE
    Arch Biochem Biophys; 1995 Nov; 323(2):343-51. PubMed ID: 7487097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of superoxide ion with tocopherol and its model compounds: correlation between the physiological activities of tocopherols and the concentration of chromanoxyl-type radicals.
    Ozawa T; Hanaki A; Matsuo M
    Biochem Int; 1983 May; 6(5):685-92. PubMed ID: 6091656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NO-redox paradox: direct oxidation of alpha-tocopherol and alpha-tocopherol-mediated oxidation of ascorbate.
    Gorbunov NV; Osipov AN; Sweetland MA; Day BW; Elsayed NM; Kagan VE
    Biochem Biophys Res Commun; 1996 Feb; 219(3):835-41. PubMed ID: 8645266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox cycles of caffeic acid, alpha-tocopherol, and ascorbate: implications for protection of low-density lipoproteins against oxidation.
    Laranjinha J; Cadenas E
    IUBMB Life; 1999 Jul; 48(1):57-65. PubMed ID: 10791916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The oxidation of alpha-tocopherol and trolox by peroxynitrite.
    Hogg N; Joseph J; Kalyanaraman B
    Arch Biochem Biophys; 1994 Oct; 314(1):153-8. PubMed ID: 7944387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transport-linked ubiquinone-dependent recycling of alpha-tocopherol inhibits autooxidation of mitochondrial membranes.
    Lass A; Sohal RS
    Arch Biochem Biophys; 1998 Apr; 352(2):229-36. PubMed ID: 9587410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity.
    Stoyanovsky DA; Goldman R; Claycamp HG; Kagan VE
    Arch Biochem Biophys; 1995 Mar; 317(2):315-23. PubMed ID: 7893144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Succinate-ubiquinone reductase linked recycling of alpha-tocopherol in reconstituted systems and mitochondria: requirement for reduced ubiquinone.
    Maguire JJ; Kagan V; Ackrell BA; Serbinova E; Packer L
    Arch Biochem Biophys; 1992 Jan; 292(1):47-53. PubMed ID: 1727650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Addition products of alpha-tocopherol with lipid-derived free radicals.
    Yamauchi R
    Vitam Horm; 2007; 76():309-27. PubMed ID: 17628179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin E chemistry. Studies into initial oxidation intermediates of alpha-tocopherol: disproving the involvement of 5a-C-centered "chromanol methide" radicals.
    Rosenau T; Kloser E; Gille L; Mazzini F; Netscher T
    J Org Chem; 2007 Apr; 72(9):3268-81. PubMed ID: 17391045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency of natural phenolic compounds regenerating alpha-tocopherol from alpha-tocopheroxyl radical.
    Pazos M; Andersen ML; Medina I; Skibsted LH
    J Agric Food Chem; 2007 May; 55(9):3661-6. PubMed ID: 17419638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dihydrolipoic acid maintains ubiquinone in the antioxidant active form by two-electron reduction of ubiquinone and one-electron reduction of ubisemiquinone.
    Kozlov AV; Gille L; Staniek K; Nohl H
    Arch Biochem Biophys; 1999 Mar; 363(1):148-54. PubMed ID: 10049509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The iron-sulfur clusters 2 and ubisemiquinone radicals of NADH:ubiquinone oxidoreductase are involved in energy coupling in submitochondrial particles.
    van Belzen R; Kotlyar AB; Moon N; Dunham WR; Albracht SP
    Biochemistry; 1997 Jan; 36(4):886-93. PubMed ID: 9020788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the high-resolution ESR spectra of superoxide radical adducts of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Analysis of conformational exchange.
    Dikalov S; Jiang J; Mason RP
    Free Radic Res; 2005 Aug; 39(8):825-36. PubMed ID: 16036362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemically controlled chemically reversible transformation of alpha-tocopherol (vitamin E) into its phenoxonium cation.
    Williams LL; Webster RD
    J Am Chem Soc; 2004 Oct; 126(39):12441-50. PubMed ID: 15453778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel protocol to identify and quantify all spin trapped free radicals from in vitro/in vivo interaction of HO(.-) and DMSO: LC/ESR, LC/MS, and dual spin trapping combinations.
    Yue Qian S; Kadiiska MB; Guo Q; Mason RP
    Free Radic Biol Med; 2005 Jan; 38(1):125-35. PubMed ID: 15589381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraviolet light-induced generation of vitamin E radicals and their recycling. A possible photosensitizing effect of vitamin E in skin.
    Kagan V; Witt E; Goldman R; Scita G; Packer L
    Free Radic Res Commun; 1992; 16(1):51-64. PubMed ID: 1325398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of packaging environments on free radicals in gamma-irradiated UHMWPE resin powder blend with vitamin E.
    Ridley MD; Jahan MS
    J Biomed Mater Res A; 2009 Mar; 88(4):1097-103. PubMed ID: 18465824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquinol prevents alpha-tocopherol consumption during liposome peroxidation.
    Cabrini L; Stefanelli C; Fiorentini D; Landi L
    Biochem Int; 1991 Mar; 23(4):743-9. PubMed ID: 1872885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active oxygen chemistry within the liposomal bilayer. Part III: Locating Vitamin E, ubiquinol and ubiquinone and their derivatives in the lipid bilayer.
    Afri M; Ehrenberg B; Talmon Y; Schmidt J; Cohen Y; Frimer AA
    Chem Phys Lipids; 2004 Aug; 131(1):107-21. PubMed ID: 15210369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.