BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7487646)

  • 1. Low-frequency biasing of round window responses in guinea pigs and chinchillas.
    Tono T; Morizono T
    Audiology; 1995; 34(1):47-56. PubMed ID: 7487646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation at the guinea pig round window of summating potentials and compound action potentials by low-frequency sound.
    Klis JF; Smoorenburg GF
    Hear Res; 1985; 20(1):15-23. PubMed ID: 4077742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Third-window vibroplasty with an active middle ear implant: assessment of physiologic responses in a model of stapes fixation in Chinchilla lanigera.
    Lupo JE; Koka K; Jenkins HA; Tollin DJ
    Otol Neurotol; 2012 Apr; 33(3):425-31. PubMed ID: 22334156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmotically induced pressure difference in the cochlea and its effect on cochlear potentials.
    Klis SF; Smoorenburg GF
    Hear Res; 1994 May; 75(1-2):114-20. PubMed ID: 8071138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating the operating point of the cochlear transducer using low-frequency biased distortion products.
    Brown DJ; Hartsock JJ; Gill RM; Fitzgerald HE; Salt AN
    J Acoust Soc Am; 2009 Apr; 125(4):2129-45. PubMed ID: 19354389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospective electrophysiologic findings of round window stimulation in a model of experimentally induced stapes fixation.
    Lupo JE; Koka K; Holland NJ; Jenkins HA; Tollin DJ
    Otol Neurotol; 2009 Dec; 30(8):1215-24. PubMed ID: 19779388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency modulation of compound action potential in experimental perilymphatic fistula and endolymphatic hydrops.
    Tono T; Morizono T
    Hear Res; 1992 Jun; 60(1):27-33. PubMed ID: 1500374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cochlear mechanisms at low frequencies in the guinea pig.
    Franke R; Dancer A
    Arch Otorhinolaryngol; 1982; 234(2):213-8. PubMed ID: 7092710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basilar membrane mechanics at the base of the chinchilla cochlea. II. Responses to low-frequency tones and relationship to microphonics and spike initiation in the VIII nerve.
    Ruggero MA; Robles L; Rich NC
    J Acoust Soc Am; 1986 Nov; 80(5):1375-83. PubMed ID: 3782616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are inner or outer hair cells the source of summating potentials recorded from the round window?
    Durrant JD; Wang J; Ding DL; Salvi RJ
    J Acoust Soc Am; 1998 Jul; 104(1):370-7. PubMed ID: 9670530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocochleographic and mechanical assessment of round window stimulation with an active middle ear prosthesis.
    Koka K; Holland NJ; Lupo JE; Jenkins HA; Tollin DJ
    Hear Res; 2010 May; 263(1-2):128-37. PubMed ID: 19720125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient focal cooling at the round window and cochlear nucleus shows round window CAP originates from cochlear neurones alone.
    McMahon CM; Brown DJ; Patuzzi RB
    Hear Res; 2004 Apr; 190(1-2):75-86. PubMed ID: 15051131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea.
    LePage EL
    J Acoust Soc Am; 1987 Jul; 82(1):139-54. PubMed ID: 3624635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of an EPSP-like potential recorded remotely from the round window.
    Dolan DF; Xi L; Nuttall AL
    J Acoust Soc Am; 1989 Dec; 86(6):2167-71. PubMed ID: 2600307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biasing of the summating potentials.
    Durrant JD; Gans D
    Acta Otolaryngol; 1975; 80(1-2):13-8. PubMed ID: 1080943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The origin of the 900 Hz spectral peak in spontaneous and sound-evoked round-window electrical activity.
    McMahon CM; Patuzzi RB
    Hear Res; 2002 Nov; 173(1-2):134-52. PubMed ID: 12372642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine structure of the intracochlear potential field. II. Tone-evoked waveforms and cochlear microphonics.
    Zidanic M; Brownell WE
    J Neurophysiol; 1992 Jan; 67(1):108-24. PubMed ID: 1552313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of cochlear responses in the guinea pig by low-frequency, phase-shifted maskers following noise trauma.
    Hoehmann D; Müller S; Dornhoffer JL
    Eur Arch Otorhinolaryngol; 1995; 252(1):S20-5. PubMed ID: 7718220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of electrical stimulation of olivocochlear fibers in cochlear potentials in the chinchilla.
    Elgueda D; Delano PH; Robles L
    J Assoc Res Otolaryngol; 2011 Jun; 12(3):317-27. PubMed ID: 21365333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.