These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 7487868)

  • 1. Structure and function of the aromatic amino acid hydroxylases.
    Hufton SE; Jennings IG; Cotton RG
    Biochem J; 1995 Oct; 311 ( Pt 2)(Pt 2):353-66. PubMed ID: 7487868
    [No Abstract]   [Full Text] [Related]  

  • 2. Insights into the catalytic mechanisms of phenylalanine and tryptophan hydroxylase from kinetic isotope effects on aromatic hydroxylation.
    Pavon JA; Fitzpatrick PF
    Biochemistry; 2006 Sep; 45(36):11030-7. PubMed ID: 16953590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selectivity and affinity determinants for ligand binding to the aromatic amino acid hydroxylases.
    Teigen K; McKinney JA; Haavik J; Martínez A
    Curr Med Chem; 2007; 14(4):455-67. PubMed ID: 17305546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aromatic amino acid hydroxylases.
    Fitzpatrick PF
    Adv Enzymol Relat Areas Mol Biol; 2000; 74():235-94. PubMed ID: 10800597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The aromatic amino acid hydroxylases: Structures, catalysis, and regulation of phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase.
    Fitzpatrick PF
    Arch Biochem Biophys; 2023 Feb; 735():109518. PubMed ID: 36639008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of aromatic amino acid hydroxylation.
    Fitzpatrick PF
    Biochemistry; 2003 Dec; 42(48):14083-91. PubMed ID: 14640675
    [No Abstract]   [Full Text] [Related]  

  • 7. Tetrahydrobiopterin binding to aromatic amino acid hydroxylases. Ligand recognition and specificity.
    Teigen K; Dao KK; McKinney JA; Gorren AC; Mayer B; Frøystein NA; Haavik J; Martínez A
    J Med Chem; 2004 Nov; 47(24):5962-71. PubMed ID: 15537351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different stabilities and denaturation pathways for structurally related aromatic amino acid hydroxylases.
    Kleppe R; Haavik J
    FEBS Lett; 2004 May; 565(1-3):155-9. PubMed ID: 15135070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of chimeric pterin-dependent hydroxylases: contributions of the regulatory domains of tyrosine and phenylalanine hydroxylase to substrate specificity.
    Daubner SC; Hillas PJ; Fitzpatrick PF
    Biochemistry; 1997 Sep; 36(39):11574-82. PubMed ID: 9305947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of a peroxide shunt in the tetrahydropterin-dependent aromatic amino acid monooxygenases.
    Pavon JA; Fitzpatrick PF
    J Am Chem Soc; 2009 Apr; 131(13):4582-3. PubMed ID: 19281164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of tryptophan hydroxylase phe313 in determining substrate specificity.
    Daubner SC; Moran GR; Fitzpatrick PF
    Biochem Biophys Res Commun; 2002 Apr; 292(3):639-41. PubMed ID: 11922614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of L-tryptophan 5-hydroxylation activity by structure-based modification of L-phenylalanine 4-hydroxylase from Chromobacterium violaceum.
    Kino K; Hara R; Nozawa A
    J Biosci Bioeng; 2009 Sep; 108(3):184-9. PubMed ID: 19664549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the catalytic domain of human phenylalanine hydroxylase reveals the structural basis for phenylketonuria.
    Erlandsen H; Fusetti F; Martinez A; Hough E; Flatmark T; Stevens RC
    Nat Struct Biol; 1997 Dec; 4(12):995-1000. PubMed ID: 9406548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine hydroxylase and tryptophan hydroxylase do not form heterotetramers.
    Mockus SM; Yohrling GJ; Vrana KE
    J Mol Neurosci; 1998 Feb; 10(1):45-51. PubMed ID: 9589369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A monoclonal antibody to aromatic amino acid hydroxylases. Identification of the epitope.
    Cotton RG; McAdam W; Jennings I; Morgan FJ
    Biochem J; 1988 Oct; 255(1):193-6. PubMed ID: 2461704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic isotope effects on benzylic hydroxylation by the aromatic amino acid hydroxylases: evidence for hydrogen tunneling, coupled motion, and similar reactivities.
    Pavon JA; Fitzpatrick PF
    J Am Chem Soc; 2005 Nov; 127(47):16414-5. PubMed ID: 16305226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intersubunit binding domains within tyrosine hydroxylase and tryptophan hydroxylase.
    Yohrling GJ; Jiang GC; Mockus SM; Vrana KE
    J Neurosci Res; 2000 Aug; 61(3):313-20. PubMed ID: 10900078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aromatic amino acid hydroxylase genes and schizophrenia.
    Chao HM; Richardson MA
    Am J Med Genet; 2002 Aug; 114(6):626-30. PubMed ID: 12210276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A flexible loop in tyrosine hydroxylase controls coupling of amino acid hydroxylation to tetrahydropterin oxidation.
    Daubner SC; McGinnis JT; Gardner M; Kroboth SL; Morris AR; Fitzpatrick PF
    J Mol Biol; 2006 Jun; 359(2):299-307. PubMed ID: 16618490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structural approach into human tryptophan hydroxylase and its implications for the regulation of serotonin biosynthesis.
    Martínez A; Knappskog PM; Haavik J
    Curr Med Chem; 2001 Jul; 8(9):1077-91. PubMed ID: 11472242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.