These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7487995)

  • 1. A single base-pair change (ATG-->ATC) nullifies the activity of cytosolic fumarase in Saccharomyces cerevisiae.
    Wu M; Wong SM; Tan HM; Ting R
    Biochem Biophys Res Commun; 1995 Oct; 215(2):578-90. PubMed ID: 7487995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial and cytoplasmic fumarases in Saccharomyces cerevisiae are encoded by a single nuclear gene FUM1.
    Wu M; Tzagoloff A
    J Biol Chem; 1987 Sep; 262(25):12275-82. PubMed ID: 3040736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The single translation product of the FUM1 gene (fumarase) is processed in mitochondria before being distributed between the cytosol and mitochondria in Saccharomyces cerevisiae.
    Stein I; Peleg Y; Even-Ram S; Pines O
    Mol Cell Biol; 1994 Jul; 14(7):4770-8. PubMed ID: 8007976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini.
    Sass E; Blachinsky E; Karniely S; Pines O
    J Biol Chem; 2001 Dec; 276(49):46111-7. PubMed ID: 11585823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial import of human and yeast fumarase in live mammalian cells: retrograde translocation of the yeast enzyme is mainly caused by its poor targeting sequence.
    Singh B; Gupta RS
    Biochem Biophys Res Commun; 2006 Aug; 346(3):911-8. PubMed ID: 16774737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The presequence of fumarase is exposed to the cytosol during import into mitochondria.
    Karniely S; Regev-Rudzki N; Pines O
    J Mol Biol; 2006 Apr; 358(2):396-405. PubMed ID: 16530220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inducible overexpression of the FUM1 gene in Saccharomyces cerevisiae: localization of fumarase and efficient fumaric acid bioconversion to L-malic acid.
    Peleg Y; Rokem JS; Goldberg I; Pines O
    Appl Environ Microbiol; 1990 Sep; 56(9):2777-83. PubMed ID: 2275532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolving dual targeting of a prokaryotic protein in yeast.
    Burak E; Yogev O; Sheffer S; Schueler-Furman O; Pines O
    Mol Biol Evol; 2013 Jul; 30(7):1563-73. PubMed ID: 23462316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translation initiation and assembly of peripherin in cultured cells.
    Ho CL; Chin SS; Carnevale K; Liem RK
    Eur J Cell Biol; 1995 Oct; 68(2):103-12. PubMed ID: 8575457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization.
    Regev-Rudzki N; Yogev O; Pines O
    J Cell Sci; 2008 Jul; 121(Pt 14):2423-31. PubMed ID: 18577574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rat liver mitochondrial and cytosolic fumarases with identical amino acid sequences are encoded from a single mRNA with two alternative in-phase AUG initiation sites.
    Tuboi S; Suzuki T; Sato M; Yoshida T
    Adv Enzyme Regul; 1990; 30():289-304. PubMed ID: 2403035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response.
    Yogev O; Yogev O; Singer E; Shaulian E; Goldberg M; Fox TD; Pines O
    PLoS Biol; 2010 Mar; 8(3):e1000328. PubMed ID: 20231875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The yeast initiator tRNAMet can act as an elongator tRNA(Met) in vivo.
    Aström SU; von Pawel-Rammingen U; Byström AS
    J Mol Biol; 1993 Sep; 233(1):43-58. PubMed ID: 8377191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding of fumarase during mitochondrial import determines its dual targeting in yeast.
    Sass E; Karniely S; Pines O
    J Biol Chem; 2003 Nov; 278(46):45109-16. PubMed ID: 12960177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and properties of the mitochondrial and cytosolic forms of fumarase in germinating maize seeds.
    Eprintsev AT; Fedorin DN; Starinina EV; Igamberdiev AU
    Physiol Plant; 2014 Oct; 152(2):231-40. PubMed ID: 24611547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Import into mitochondria, folding and retrograde movement of fumarase in yeast.
    Knox C; Sass E; Neupert W; Pines O
    J Biol Chem; 1998 Oct; 273(40):25587-93. PubMed ID: 9748223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha-complementation as a probe for dual localization of mitochondrial proteins.
    Karniely S; Rayzner A; Sass E; Pines O
    Exp Cell Res; 2006 Nov; 312(19):3835-46. PubMed ID: 17034789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling tumor predisposing FH mutations in yeast: effects on fumarase activity, growth phenotype and gene expression profile.
    Kokko A; Ylisaukko-Oja SS; Kiuru M; Takatalo MS; Salmikangas P; Tuimala J; Arango D; Karhu A; Aaltonen LA; Jäntti J
    Int J Cancer; 2006 Mar; 118(6):1340-5. PubMed ID: 16206287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatographic differentiation of the mitochondrial and cytosolic fumarases of rat liver and Baker's yeast and differential induction of two fumarases of Baker's yeast.
    Hiraga K; Inoue I; Manaka H; Tuboi S
    Biochem Int; 1984 Oct; 9(4):455-61. PubMed ID: 6393988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of populations of mRNA coding fumarase in rat brain and liver.
    Hiraga K; Tuboi S
    Biochem Int; 1985 Apr; 10(4):681-7. PubMed ID: 4026873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.