These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 7488105)
1. Domain III exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors. Lee MK; Young BA; Dean DH Biochem Biophys Res Commun; 1995 Nov; 216(1):306-12. PubMed ID: 7488105 [TBL] [Abstract][Full Text] [Related]
2. N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. Burton SL; Ellar DJ; Li J; Derbyshire DJ J Mol Biol; 1999 Apr; 287(5):1011-22. PubMed ID: 10222207 [TBL] [Abstract][Full Text] [Related]
3. Aminopeptidase N purified from gypsy moth brush border membrane vesicles is a specific receptor for Bacillus thuringiensis CryIAc toxin. Lee MK; You TH; Young BA; Cotrill JA; Valaitis AP; Dean DH Appl Environ Microbiol; 1996 Aug; 62(8):2845-9. PubMed ID: 8702277 [TBL] [Abstract][Full Text] [Related]
4. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy. Valaitis AP J Invertebr Pathol; 2011 Oct; 108(2):69-75. PubMed ID: 21767544 [TBL] [Abstract][Full Text] [Related]
5. Resistance to Bacillus thuringiensis CryIA delta-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Lee MK; Rajamohan F; Gould F; Dean DH Appl Environ Microbiol; 1995 Nov; 61(11):3836-42. PubMed ID: 8526494 [TBL] [Abstract][Full Text] [Related]
6. Inconsistencies in determining Bacillus thuringiensis toxin binding sites relationship by comparing competition assays with ligand blotting. Lee MK; Dean DH Biochem Biophys Res Commun; 1996 Mar; 220(3):575-80. PubMed ID: 8607806 [TBL] [Abstract][Full Text] [Related]
7. Selective inhibition of binding of Bacillus thuringiensis Cry1Ab toxin to cadherin-like and aminopeptidase proteins in brush-border membranes and dissociated epithelial cells from Bombyx mori. Ibiza-Palacios MS; Ferré J; Higurashi S; Miyamoto K; Sato R; Escriche B Biochem J; 2008 Jan; 409(1):215-21. PubMed ID: 17725543 [TBL] [Abstract][Full Text] [Related]
8. Involvement of two amino acid residues in the loop region of Bacillus thuringiensis Cry1Ab toxin in toxicity and binding to Lymantria dispar. Lee MK; You TH; Curtiss A; Dean DH Biochem Biophys Res Commun; 1996 Dec; 229(1):139-46. PubMed ID: 8954096 [TBL] [Abstract][Full Text] [Related]
9. Irreversible binding kinetics of Bacillus thuringiensis CryIA delta-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity. Liang Y; Patel SS; Dean DH J Biol Chem; 1995 Oct; 270(42):24719-24. PubMed ID: 7559587 [TBL] [Abstract][Full Text] [Related]
10. Binding of Bacillus thuringiensis Cry1A toxins to brush border membrane vesicles of midgut from Cry1Ac susceptible and resistant Plutella xylostella. Higuchi M; Haginoya K; Yamazaki T; Miyamoto K; Katagiri T; Tomimoto K; Shitomi Y; Hayakawa T; Sato R; Hori H Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):716-24. PubMed ID: 17543562 [TBL] [Abstract][Full Text] [Related]
11. Synergistic effect of the Bacillus thuringiensis toxins CryIAa and CryIAc on the gypsy moth, Lymantria dispar. Lee MK; Curtiss A; Alcantara E; Dean DH Appl Environ Microbiol; 1996 Feb; 62(2):583-6. PubMed ID: 8593057 [TBL] [Abstract][Full Text] [Related]
12. Detection of Choristoneura fumiferana brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by crossed affinity immunoelectrophoresis. Pang AS Biochem Biophys Res Commun; 1994 Mar; 199(3):1194-9. PubMed ID: 8147860 [TBL] [Abstract][Full Text] [Related]
13. Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Pardo-López L; Gómez I; Rausell C; Sanchez J; Soberón M; Bravo A Biochemistry; 2006 Aug; 45(34):10329-36. PubMed ID: 16922508 [TBL] [Abstract][Full Text] [Related]
14. Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. de Barros Moreira Beltrão H; Silva-Filha MH FEMS Microbiol Lett; 2007 Jan; 266(2):163-9. PubMed ID: 17132151 [TBL] [Abstract][Full Text] [Related]
15. Bacillus thuringiensis pore-forming toxins trigger massive shedding of GPI-anchored aminopeptidase N from gypsy moth midgut epithelial cells. Valaitis AP Insect Biochem Mol Biol; 2008 Jun; 38(6):611-8. PubMed ID: 18510972 [TBL] [Abstract][Full Text] [Related]
16. Mutations at domain II, loop 3, of Bacillus thuringiensis CryIAa and CryIAb delta-endotoxins suggest loop 3 is involved in initial binding to lepidopteran midguts. Rajamohan F; Hussain SR; Cotrill JA; Gould F; Dean DH J Biol Chem; 1996 Oct; 271(41):25220-6. PubMed ID: 8810282 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the localization of Bacillus thuringiensis Cry1A delta-endotoxins and their binding proteins in larval midgut of tobacco hornworm, Manduca sexta. Chen J; Brown MR; Hua G; Adang MJ Cell Tissue Res; 2005 Jul; 321(1):123-9. PubMed ID: 15902495 [TBL] [Abstract][Full Text] [Related]
18. Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CryIA(c) delta-endotoxin of Bacillus thuringiensis. Valaitis AP; Lee MK; Rajamohan F; Dean DH Insect Biochem Mol Biol; 1995 Dec; 25(10):1143-51. PubMed ID: 8580914 [TBL] [Abstract][Full Text] [Related]
19. Immunohistochemical detection of binding of CryIA crystal proteins of Bacillus thuringiensis in highly resistant strains of Plutella xylostella (L.) from Hawaii. Escriche B; Tabashnik B; Finson N; Ferré J Biochem Biophys Res Commun; 1995 Jul; 212(2):388-95. PubMed ID: 7626052 [TBL] [Abstract][Full Text] [Related]
20. Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoptera frugiperda (Lepidoptera: Noctuidae). Aranda E; Sanchez J; Peferoen M; Güereca L; Bravo A J Invertebr Pathol; 1996 Nov; 68(3):203-12. PubMed ID: 8931361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]