These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 7488187)
1. Formation of malondialdehyde-modified 2'-deoxyguanosinyl adduct from metabolism of chloral hydrate by mouse liver microsomes. Ni YC; Kadlubar FF; Fu PP Biochem Biophys Res Commun; 1995 Nov; 216(3):1110-7. PubMed ID: 7488187 [TBL] [Abstract][Full Text] [Related]
2. NTP technical report on the toxicity and metabolism studies of chloral hydrate (CAS No. 302-17-0). Administered by gavage to F344/N rats and B6C3F1 mice. Beland FA Toxic Rep Ser; 1999 Aug; (59):1-66, A1-E7. PubMed ID: 11803702 [TBL] [Abstract][Full Text] [Related]
3. Mouse liver microsomal metabolism of chloral hydrate, trichloroacetic acid, and trichloroethanol leading to induction of lipid peroxidation via a free radical mechanism. Ni YC; Wong TY; Lloyd RV; Heinze TM; Shelton S; Casciano D; Kadlubar FF; Fu PP Drug Metab Dispos; 1996 Jan; 24(1):81-90. PubMed ID: 8825194 [TBL] [Abstract][Full Text] [Related]
4. Tumorigenicity of chloral hydrate, trichloroacetic acid, trichloroethanol, malondialdehyde, 4-hydroxy-2-nonenal, crotonaldehyde, and acrolein in the B6C3F(1) neonatal mouse. Von Tungeln LS; Yi P; Bucci TJ; Samokyszyn VM; Chou MW; Kadlubar FF; Fu PP Cancer Lett; 2002 Nov; 185(1):13-9. PubMed ID: 12142074 [TBL] [Abstract][Full Text] [Related]
5. Species- and sex-related differences in metabolism of trichloroethylene to yield chloral and trichloroethanol in mouse, rat, and human liver microsomes. Elfarra AA; Krause RJ; Last AR; Lash LH; Parker JC Drug Metab Dispos; 1998 Aug; 26(8):779-85. PubMed ID: 9698293 [TBL] [Abstract][Full Text] [Related]
6. A physiologically based pharmacokinetic model for trichloroethylene and its metabolites, chloral hydrate, trichloroacetate, dichloroacetate, trichloroethanol, and trichloroethanol glucuronide in B6C3F1 mice. Abbas R; Fisher JW Toxicol Appl Pharmacol; 1997 Nov; 147(1):15-30. PubMed ID: 9356303 [TBL] [Abstract][Full Text] [Related]
7. Lipid peroxidation-induced putative malondialdehyde-DNA adducts in human breast tissues. Wang M; Dhingra K; Hittelman WN; Liehr JG; de Andrade M; Li D Cancer Epidemiol Biomarkers Prev; 1996 Sep; 5(9):705-10. PubMed ID: 8877062 [TBL] [Abstract][Full Text] [Related]
8. An improved 32P-postlabeling/high-performance liquid chromatography method for the analysis of the malondialdehye-derived 1, N2-propanodeoxyguanosine DNA adduct in animal and human tissues. Yi P; Sun X; Doerge DR; Fu PP Chem Res Toxicol; 1998 Sep; 11(9):1032-41. PubMed ID: 9760277 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of chloral hydrate and its metabolites in male human volunteers. Merdink JL; Robison LM; Stevens DK; Hu M; Parker JC; Bull RJ Toxicology; 2008 Mar; 245(1-2):130-40. PubMed ID: 18243465 [TBL] [Abstract][Full Text] [Related]
10. Pharmacokinetic analysis of chloral hydrate and its metabolism in B6C3F1 mice. Abbas RR; Seckel CS; Kidney JK; Fisher JW Drug Metab Dispos; 1996 Dec; 24(12):1340-6. PubMed ID: 8971140 [TBL] [Abstract][Full Text] [Related]
11. Hepatic metabolism of chloral hydrate to free radical(s) and induction of lipid peroxidation. Ni YC; Wong TY; Kadlubar FF; Fu PP Biochem Biophys Res Commun; 1994 Oct; 204(2):937-43. PubMed ID: 7980564 [TBL] [Abstract][Full Text] [Related]
12. Chloral hydrate sedation in neonates and infants--clinical and pharmacologic considerations. Reimche LD; Sankaran K; Hindmarsh KW; Kasian GF; Gorecki DK; Tan L Dev Pharmacol Ther; 1989; 12(2):57-64. PubMed ID: 2714158 [TBL] [Abstract][Full Text] [Related]
13. The effect of chloral hydrate and its metabolites, trichloroethanol and trichloroacetic acid, on bilirubin-albumin binding. Onks DL; Robertson AF; Brodersen R Pharmacol Toxicol; 1992 Sep; 71(3 Pt 1):196-7. PubMed ID: 1438041 [TBL] [Abstract][Full Text] [Related]
14. Benzo[a]pyrene-7,8-quinone-3'-mononucleotide adduct standards for 32P postlabeling analyses: detection of benzo[a]pyrene-7,8-quinone-calf thymus DNA adducts. Balu N; Padgett WT; Nelson GB; Lambert GR; Ross JA; Nesnow S Anal Biochem; 2006 Aug; 355(2):213-23. PubMed ID: 16797471 [TBL] [Abstract][Full Text] [Related]
15. Synthesis, characterization, and quantitation of a 4-aminobiphenyl-DNA adduct standard. Beland FA; Doerge DR; Churchwell MI; Poirier MC; Schoket B; Marques MM Chem Res Toxicol; 1999 Jan; 12(1):68-77. PubMed ID: 9894020 [TBL] [Abstract][Full Text] [Related]
16. Extrahepatic metabolism of chloral hydrate, trichloroethanol and trichloroacetic acid in dogs. Hobara T; Kobayashi H; Kawamoto T; Iwamoto S; Sakai T Pharmacol Toxicol; 1987 Jul; 61(1):58-62. PubMed ID: 3628182 [TBL] [Abstract][Full Text] [Related]
17. Alteration of chloral hydrate metabolism in rats with carbon tetrachloride-induced liver damage. Kawamoto T; Hobara T; Kobayashi H; Iwamoto S; Sakai T; Ogino K Toxicol Lett; 1987 Aug; 37(3):263-8. PubMed ID: 3617101 [TBL] [Abstract][Full Text] [Related]
18. Physiologically based pharmacokinetic modeling of inhaled trichloroethylene and its oxidative metabolites in B6C3F1 mice. Greenberg MS; Burton GA; Fisher JW Toxicol Appl Pharmacol; 1999 Feb; 154(3):264-78. PubMed ID: 9931286 [TBL] [Abstract][Full Text] [Related]
19. A species comparison of chloral hydrate metabolism in blood and liver. Lipscomb JC; Mahle DA; Brashear WT; Garrett CM Biochem Biophys Res Commun; 1996 Oct; 227(2):340-50. PubMed ID: 8878519 [TBL] [Abstract][Full Text] [Related]
20. A human physiologically based pharmacokinetic model for trichloroethylene and its metabolites, trichloroacetic acid and free trichloroethanol. Fisher JW; Mahle D; Abbas R Toxicol Appl Pharmacol; 1998 Oct; 152(2):339-59. PubMed ID: 9853003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]