These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 7488488)

  • 1. Effects of propofol on isolated rabbit mesenteric arteries and veins.
    Kamitani K; Yamazaki M; Yukitaka M; Ito Y; Momose Y
    Br J Anaesth; 1995 Oct; 75(4):457-61. PubMed ID: 7488488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of propofol on norepinephrine-induced increases in [Ca2+]i and force in smooth muscle of the rabbit mesenteric resistance artery.
    Imura N; Shiraishi Y; Katsuya H; Itoh T
    Anesthesiology; 1998 Jun; 88(6):1566-78. PubMed ID: 9637651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of propofol on isolated human omental arteries and veins.
    Wallerstedt SM; Bodelsson M
    Br J Anaesth; 1997 Mar; 78(3):296-300. PubMed ID: 9135309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of propofol on rabbit mesenteric arteries and veins.
    Stratford N
    Br J Anaesth; 1996 Feb; 76(2):333-4. PubMed ID: 8777129
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibitory effects of propofol on acetylcholine-induced, endothelium-dependent relaxation and prostacyclin synthesis in rabbit mesenteric resistance arteries.
    Yamashita A; Kajikuri J; Ohashi M; Kanmura Y; Itoh T
    Anesthesiology; 1999 Oct; 91(4):1080-9. PubMed ID: 10519512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparison of the inhibitory effect of diltiazem on neurogenic contractions in the mesenteric arteries and veins].
    Török J; Töröková R
    Bratisl Lek Listy; 1992 Jun; 93(6):295-9. PubMed ID: 1393651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiopental and propofol impair relaxation produced by ATP-sensitive potassium channel openers in the rat aorta.
    Kinoshita H; Ishida K; Ishikawa T
    Br J Anaesth; 1998 Nov; 81(5):766-70. PubMed ID: 10193292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relaxant effects of propofol on human omental arteries and veins.
    Wallerstedt SM; Törnebrandt K; Bodelsson M
    Br J Anaesth; 1998 May; 80(5):655-9. PubMed ID: 9691872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of propofol and sevoflurane on isolated human umbilical arteries pre-contracted with dopamine, adrenaline and noradrenaline.
    Gunduz E; Arun O; Bagci ST; Oc B; Salman A; Yilmaz SA; Celik C; Duman A
    J Obstet Gynaecol Res; 2015 May; 41(5):697-703. PubMed ID: 25511326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Verapamil and nifedipine inhibition of contractions induced by potassium and noradrenaline in human mesenteric arteries and veins.
    Mikkelsen E; Andersson KE; Lederballe Pedersen O
    Acta Pharmacol Toxicol (Copenh); 1979 Feb; 44(2):110-9. PubMed ID: 760390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses to histamine and acetylcholine in isolated monkey mesenteric veins versus arteries.
    Okamura T; Yamazaki M; Toda N
    Cardiovasc Res; 1994 May; 28(5):667-72. PubMed ID: 8025911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of a novel vasodilator, LP-805, on cytosolic Ca2+ concentrations and on tension in rabbit isolated femoral arteries.
    Ushio-Fukai M; Hirano K; Kanaide H
    Br J Pharmacol; 1994 Dec; 113(4):1173-82. PubMed ID: 7889270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences and similarities in the noradrenaline- and caffeine-induced mechanical responses in the rabbit mesenteric artery.
    Itoh T; Kuriyama H; Suzuki H
    J Physiol; 1983 Apr; 337():609-29. PubMed ID: 6410057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vasodilation and mechanism of action of propofol in porcine coronary artery.
    Yamanoue T; Brum JM; Estafanous FG
    Anesthesiology; 1994 Aug; 81(2):443-51. PubMed ID: 8053594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sevoflurane on the vascular reactivity of rabbit mesenteric artery.
    Yamaguchi A; Okabe E
    Br J Anaesth; 1995 May; 74(5):576-82. PubMed ID: 7772435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of propofol on neural and endothelial control of in situ rat mesenteric vascular smooth muscle transmembrane potentials.
    Yamazaki M; Nagakawa T; Hatakeyama N; Shibuya N; Stekiel TA
    Anesth Analg; 2002 Apr; 94(4):892-7, table of contents. PubMed ID: 11916792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible mechanisms underlying the midazolam-induced relaxation of the noradrenaline-contraction in rabbit mesenteric resistance artery.
    Shiraishi Y; Ohashi M; Kanmura Y; Yamaguchi S; Yoshimura N; Itoh T
    Br J Pharmacol; 1997 Jul; 121(6):1155-63. PubMed ID: 9249252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of vasopressin on smooth muscle cells of guinea-pig mesenteric vessels.
    Karashima T
    Br J Pharmacol; 1981 Apr; 72(4):673-84. PubMed ID: 7284685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of lidocaine and bupivacaine on isolated rabbit mesenteric capacitance veins.
    Hogan QH; Stadnicka A; Bosnjak ZJ; Kampine JP
    Reg Anesth Pain Med; 1998; 23(4):409-17. PubMed ID: 9690595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of inositol (1,4,5)-trisphosphate, intracellular Ca2+ release and myofilament Ca2+ sensitization in 5-hydroxytryptamine-evoked contraction of rabbit mesenteric artery.
    Seager JM; Murphy TV; Garland CJ
    Br J Pharmacol; 1994 Feb; 111(2):525-32. PubMed ID: 8004397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.